

Introduction

- Data collection is booming.
- Personal microdata are published after anonymization.
- Anonymized data are not truly private.
- Correlated public data can be exploited for de-anonymization!
- Database Matching

Applications of Database Matching

- Data & network privacy
- Computer vision
- DNA sequencing
- Single-cell biological data alignment

System Model

- ▶ Unlabeled Database: $\mathbf{D}^{(1)} \in \mathfrak{X}^{m_n \times n}$ with
- ► I.I.D. rows following a first-order stationary Markov process capturing correlation among attributes.
- \blacktriangleright Probability transition matrix **P** over \mathfrak{X}

$$\mathbf{P} = \gamma \mathbf{I} + (1 - \gamma) \mathbf{U}$$

$$U_{i,j} = u_j > 0, \forall (i,j) \in \mathfrak{X}^2$$

- \blacktriangleright π : stationary distribution of \mathbf{P} .
- Labeling Function: Uniform permutation Θ_n of $[m_n]$.
- Synchronization Errors: Random column repetition pattern $S^n \stackrel{\text{i.i.d.}}{\sim} p_S, \delta \triangleq p_S(0)$.
- ► Labeled Database: Pair $(\mathbf{D}^{(2)}, \Theta_n)$ with

$$D_{i,j}^{(2)} = egin{cases} E, & ext{if } S_j = 0 \ D_{\Theta_n^{-1}(i),j}^{(1)} \otimes \mathbbm{1}^{S_j} & ext{if } S_i \geq 1 \end{cases}$$

- ► Database Growth Rate: $R = \lim_{n \to \infty} \frac{\log_2 m_n}{n}$.
- Matching: Estimation of Θ_n .

Matching of Markov Databases Under **Random Column Repetitions**

Serhat Bakirtas, Elza Erkip {serhat.bakirtas,elza}@nyu.edu 2022 Asilomar Conference on Signals, Systems, and Computers

Objectives

- What are the sufficient and the necessary conditions on the database growth rate for successful matching?
- \blacktriangleright Can we infer the repetition pattern S^n from $(\mathbf{D}^{(1)}, \mathbf{D}^{(2)})$? If yes, how?

Main Result

Databases with growth rate R can be successfully matched if R < C where

$$egin{aligned} \mathcal{C} & \triangleq rac{(1-\delta)(1-\gamma)}{(1-\gamma\delta)}[\mathcal{H}(\pi) + \sum_{i\in\mathfrak{X}}u_i^2\log u_i] \ & -(1-\delta)^2\sum_{r=0}^\infty \delta^r\sum_{i\in\mathfrak{X}}u_i(\gamma^{r+1} + (1-\gamma^{r+1})u_i)\log(\gamma^{r+1} + (1-\gamma^{r+1})u_i) \end{aligned}$$

Furthermore, a necessary condition for the existence of a successful matching scheme is $R \leq C$.

Achievability-I: Histogram-Based Repetition Detection

$\mathbf{D}^{(1)}$				
a b a c c b	$\mathbf{TT}(1)$	$\mathbf{D}^{(2)}$		
	$\mathbf{H}^{(+)}$			
	$\begin{bmatrix} 3 & 1 & 1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 2 & 0 & 0 \end{bmatrix}$			
	\rightarrow $\begin{bmatrix} 1 & 3 & 4 & 4 & 3 & 4 \\ 4 & 4 & 2 & 2 & 5 \end{bmatrix}$			
		$\begin{bmatrix} a & a & b & b \\ c & c & c & c & b & b \end{bmatrix}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c c b b b b c		
0 0 0 <u>a</u> c c	(1)	$\frac{b \ b \ b \ b \ b \ c}{(2)}$		
	$\mathbf{H}^{(\perp)}$	$\mathbf{H}^{(2)}$		
	3 1 1 2 0 0	$3 \ 3 \ 1 \ 1 \ 1 \ 2 \ 0$		
	$1 \ 3 \ 4 \ 4 \ 3 \ 4$	$1 \ 1 \ 4 \ 4 \ 4 \ 4 \ 4$		
	4 4 3 2 5 3	4 4 3 3 3 2 3		
	$0 \ 0 \ 0 \ 0 \ 1$	$0 \ 0 \ 0 \ 0 \ 0 \ 1$		
	$\hat{S}^n = \begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 1 \end{bmatrix}$			

	$\mathbf{D}^{(2)}$		
$D_{2,3}$	$D_{2,5}$	$D_{2,5}$	$D_{2,6}$
$D_{3,3}$	$D_{3,5}$	$D_{3,5}$	$D_{3,6}$
$D_{4,3}$	$D_{4,5}$	$D_{4,5}$	$D_{4,6}$
$D_{1,3}$	$D_{1,5}$	$D_{1,5}$	$D_{1,6}$
$D_{5,3}$	$D_{5,5}$	$D_{5,5}$	$D_{5,6}$

1354

NYU WIRELESS

Lemma: Asymptotic Uniqueness of The Histograms

- As long as $m_n = \omega(n^4)$
- column histograms are asymptotically
- histogram-based repetition detection is

Achievability-II: Matching Scheme

Converse

- ► A genie aided proof, assuming the repetition pattern S^n .
- Provides insight into privacy-preserving anonymized data sharing/publication

Conclusion

- A wide range of applications of database
- Existence of an underlying structure
- Column histograms of the databases are asymptotically unique.
- Histograms help us infer the repetition
- A tight bound on the achievable database growth rates.