
Database Matching Under Column Deletions
Serhat Bakırtaş
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Abstract—De-anonymizing user identities by matching various
forms of user data available on the internet raises privacy
concerns. A fundamental understanding of the privacy leakage in
such scenarios requires a careful study of conditions under which
correlated databases can be matched. Motivated by synchroniza-
tion errors in time indexed databases, in this work, matching of
random databases under random column deletion is investigated.
Adapting tools from information theory, in particular ones devel-
oped for the deletion channel, conditions for database matching
in the absence and presence of deletion location information are
derived, showing that partial deletion information significantly
increases the achievable database growth rate for successful
matching. Furthermore, given a batch of correctly-matched rows,
a deletion detection algorithm that provides partial deletion
information is proposed and a lower bound on the algorithm’s
deletion detection probability in terms of the column size and
the batch size is derived. The relationship between the database
size and the batch size required to guarantee a given deletion
detection probability using the proposed algorithm suggests that
a batch size growing double-logarithmic with the row size is
sufficient for a nonzero detection probability guarantee.

I. INTRODUCTION

In the last decade, especially with the proliferation of smart
devices and the rise of social media, there has been a boom
in data collection. As the collection of potentially sensitive
personal data by companies and governments has increased,
so has the risk of privacy leakage due to sale and publication
of collected data. The privacy concerns over the publication
of the anonymized data have been articulated recently where
[1]–[5] have shown that anonymization is not sufficient on
its own to prevent privacy leakage. In particular, these works
devise practical attacks and use them on real data to match
anonymized database with publicly available user information.
While these attacks work efficiently on real data, [1]–[5] do
not suggest a fundamental understanding of what kind of data
is vulnerable to privacy attacks.

More recently matching of correlated databases have been
rigorously investigated in [6] and [7]. In [6], Shirani et al.
developed a matching scheme based on joint typicality and
derived necessary and sufficient conditions on the database
growth rate for realiable matching using an extension of
Shannon-McMillan-Breiman Theorem and Fano’s inequality.
In [7], Cullina et al. introduced cycle mutual information as a
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Fig. 1. An illustrative example of database matching under column deletions.
Each row corresponds to a user and each database entry is the type of a
transaction.

new correlation metric and derived sufficient conditions for a
successful matching and a converse result.

In this paper, we further the study of database matching
by considering random column deletions. To motivate column
deletions, consider the following scenario illustrated in Figure
1: We have access to two anonymized databases containing
time-indexed transactions of a set of users made respectively
through a bank account and a credit card associated with it,
where the time indices don’t necessarily match, i.e. there may
be synchronization errors. By matching these users across
these correlated databases, an attacker could gain useful in-
formation on user spending profiles or the bank can detect a
potentially fraudulent activity.

We model the above example as a database matching
problem where the goal is to match the corresponding rows
across databases such that the probability of mismatch goes
to zero as the number of attributes in the database (number
of columns) grows to infinity. The two databases are assumed
to have the same number of users (rows) and are generated
according to a bivariate stochastic process as in [6]. Different
than [6], the second database suffers from column deletion.
The indices of the deleted columns are not known due to
synchronization errors similar to the deletion channel model
[8]. We also assume availability of partial deletion location
information, where a subset of deleted column indices are
known.

Our goal is to investigate sufficient conditions for the
successful matching of rows under column deletions, in the
presence of partial deletion location information. We first



derive conditions on the database size, deletion probability and
amount of partial deletion location information for successful
matching. In many practical problems, rather than partial
deletion location information, a batch of already-matched
rows, which we call seeds may be available. Given such a
batch, we propose an algorithm which detects deleted columns
by exploiting the fact that the same set of columns is deleted
in each row. Furthermore, we present a lower bound to this
algorithm’s deletion detection probability in terms of the col-
umn size of the database, n, and the row size of the correctly-
matched batch, B. In turn, we investigate the relation between
the row size of the database, m and B, for a given performance
guarantee in terms of deletion detection probability. We argue
that as long as B grows faster than log logm, all deleted
columns can be detected, pointing that even a small seed size
may help with matching.

The organization of this paper is as follows: Section II
contains the formulation of the problem. In Section III,
results on sufficient conditions for the successful database
matching are presented. In Section IV, for a given batch of
correctly-matched rows, an algorithm for deletion detection
is proposed and the relation between the detection probability
of the algorithm, the column size and the size of the batch
are investigated. Finally, in Section V the results are discussed.

Notation: We denote the set of integers {1,2, ...,n}
as [n], databases with calligraphic letters, (e.g. C ),
random vectors with bold uppercase letters. For a set
of indices ID = {i1, i2, ..., id} ⊆ [n], we denote the vector
(X1, ...,Xi1−1,Xi1+1, ...,Xi2−1,Xi2+1, ...,Xid−1,Xid+1, ...) of
length n−d with X([n]\ ID).

II. PROBLEM FORMULATION

We use the following definitions, some of which are taken
from [6] to formalize our problem.

Definition 1. (Unlabeled Database) An (m,n, pX ) unlabeled
random database is a randomly generated m × n matrix
C = {Xi, j ∈ Xm×n} with i.i.d. entries drawn according to the
distribution pX from a discrete alphabet X. The ith row Xi of
C is said to correspond to user i. Here m and n represent the
number of users and the number of attributes, respectively.

Definition 2. (Column Deletion Pattern) Column deletion
pattern Dn = {D1,D2, ...,Dn} is a random vector with i.i.d.
Bern(δ ) ∈ {0,1} entries, independent of C (1), Di = 1 indicat-
ing that the ith column is deleted. The Bernoulli parameter δ

is called the column deletion probability.

Definition 3. (Column Deleted Labeled Database) Let C (1)

be an (m,n, pX ) unlabeled database. Let Dn be the column
deletion pattern, Θ be a permutation of [m]. Given C (1) and
Dn, the pair (C (2),Θ) is called the column deleted labeled
database if R(1)

i and R(2)
i have the following relation:

R(2)
i =

{
E, if Di = 1
Θ◦R(1)

i if Di = 0

where R( j)
i denotes the ith column of the database C ( j) and

R(2)
i = E corresponds to all entries of R(2)

i being the empty
string. Therefore, given a deletion pattern Dn, the column

size of C (2) is
n
∑

i=1
Di, which is a Binomial(n,1− δ ) random

variable, independent of the database entries.
For the databases in Definition 3, the ith row Yi of C (2) is

said to correspond to the user Θ
−1(i). The rows Xi1 and Yi2

are said to be matching rows, if Θ(i1) = i2, where Θ is called
the labeling function.

Notice C (2) is obtained by shuffling C (1) with Θ followed
by column deletion, and there is no noise on the retained
entries, similar to the deletion channel model [8].

Definition 4. (Deletion Detection Pattern) Given the column
deletion pattern Dn, the column deletion detection pattern
An = {A1,A2, ...,An} is a random vector independent of C (1),
with independent entries having the following conditional
distribution:

P(Ai = 1|Di) = α1[Di=1], ∀i ∈ [n]

where 1ε is the indicator function of event ε . The parameter
α ∈ [0,1] is called the deletion detection probability.

Definition 5. (Database Growth Rate) The database growth
rate R of an (m,n, pX ) unlabeled database is defined as

R = lim
n→∞

1
n

log2 m

Definition 6. (Successful Matching Scheme) Given a deletion
detection pattern An, a matching scheme is a sequence of map-
pings sn : (C (1),C (2))→ Θ̂n where Θ̂n ∈ [m]m is the estimate
of the correct permutation Θn. The scheme is successful if

P(Θn(I) = Θ̂n(I))→ 1 as n→ ∞

where the index I is drawn uniformly from [m]. Here the
dependence of Θ̂n on An is omitted for brevity.

Definition 7. (Achievable Database Growth Rate) Given a
database probability distribution pX , column deletion prob-
ability δ and deletion detection probability α , a database
growth rate R is said to be achievable if for any pair of
databases (C (1),C (2)) with database growth rate R, there exists
a successful matching scheme.

III. ACHIEVABLE DATABASE GROWTH RATES

In this section, our goal is to derive achievable database
growth rates as in Definition 7 and associated matching
schemes.

In the following theorem, we consider the following match-
ing strategy: We first discard all the deleted columns of C (1)

that are detected, exploiting the fact that all the rows have
the same deletion pattern. Then, we use a row matching
scheme following [6] and [9]. Our strategy matches each row
separately and does not use the fact that each row has identical
deletion pattern. In Section IV we show that exploiting the
deletion pattern across rows can in fact be very beneficial.



Furthermore, it should be emphasized that one could perform
the matching at the database level to potentially achieve higher
database growth rates.

Theorem 1. Consider an unlabeled database generated ac-
cording to pX with alphabet X and a column deletion proba-
bility δ < 1− 1

|X| . For a deletion detection probability α , any
database growth rate

R <
[
(1−αδ )

(
H(X)−Hb

(
1−δ

1−αδ

))
− (1−α)δ log(|X|−1)

]+
is achievable, where H,Hb and [.]+ denote the entropy, the
binary entropy, and the positive part functions respectively.

Note that one could rearrange the terms on the right-hand
side as the following:[

(1−δ )H(X)− (1−α)δ (log(|X|−1)−H(X))

− (1−αδ )Hb

(
1−δ

1−αδ

)]+
where the term (1− δ )H(X) corresponds to achievable rate
in the presence of full deletion location information (α = 1),
the second term is the penalty due to a potentially low H(X)
causing C (1) to have similar entries in each row and thus
increasing the error probability, and the last term represents
the penalty paid for the lack of deletion location information.
Since the penalty terms decrease with α , intuitively Theorem 1
states that as more deleted columns are detected, the matching
becomes easier due to lower dimensionality of the search
space.

Proof. Let Dn and An be the deletion and the deletion detec-

tion patterns, respectively. Let K = n−
n
∑

i=1
Di be the random

variable corresponding to the number of columns in C (2).
Then, for any ε̃ > 0 we have

P
(∣∣∣∣Kn − (1−δ )

∣∣∣∣> ε̃

)
→ 0 as n→ ∞

Choose k = bn(1− δ − ε̃)c. Note that for any K ≥ k, n−K
n ≤

δ + ε̃ as n→∞. Denoting the probability that K < k by κn and
using the Law of Large Numbers, we have κn→ 0 as n→ ∞.

Now, let IA be the set of detected deletion indices, and A =

|IA|=
n
∑

i=1
Ai. Then, for any ε̂ > 0 we have

P
(∣∣∣∣ A

n− k
−α

∣∣∣∣> ε̂

)
→ 0 as n→ ∞

Choose a = b(n− k)(α− ε̂)c. Note that for any A≥ a, A
n−k ≥

α − ε̂ as n→ ∞. Denoting the probability that A < a by µn,
using the Law of Large Numbers, we have µn→ 0 as n→∞.

Let A(n−a)
ε (X) be the ε-typical set associated with pX with

parameter n− a. Consider the following matching scheme:
First, we discard all columns whose index belongs to IA, since
these columns are known to be deleted. Given a row Y j1 of

C (2), we match the row Xi1 of C (1) assigning Θ̂
−1
( j1) = i1, if

Xi1([n] \ IA) contains Y j1 , Xi1([n] \ IA) ∈ A(n−a)
ε (X) and there

is no other row Xn
i2 of C (1) with Xi2([n] \ IA) ∈ A(n−a)

ε (X)
containing Y j1 potentially in a non-contiguous way. We say
that in that case no collision occurs. If any of these steps fail,
we declare an error.

In addition, the matching scheme only considers K ≥ k,A≥
a and otherwise declares an error. Since additional columns in
C (2) and additional detected deleted columns would decrease
the collision probability, we have

P(collision|K ≥ k,A≥ a)≤ P(collision|K = k,A = a)

Denote the pairwise collision probability between X1 and
Xi, by Pcol,i. Therefore given the correct labeling for Y∈C (2)

is X1 ∈ C (1), the probability of error can be bounded as

Pe ≤
2nR

∑
i=2

Pcol,i + ε +κn +µn

≤ 2nRPcol,2 + ε +κn +µn (1)

where we used that the rows are i.i.d. and Pcol,i = Pcol,2. Let
F(n,k, |X|) denote the number of |X|-ary sequences of length
n, which contain a fixed |X|-ary sequence of length k. Since
k
n ≥ 1− δ − ε̃ and δ ≤ 1− 1

|X| , we have k
n ≥

1
|X| − ε̃ . Then

from [10] and [11] (Chapter 11) we have the following upper
bound for k ≥ n

|X| :

F(n,k, |X|)≤ n2nHb(k/n)(|X|−1)n−k

Let T (y, IA) = {x∈Xn|x([n]\ IA)∈ A(n−a)
ε contains y} and y

be the row of C (2) matching with the row X1 of C (1). It is clear
that |T (y, IA)| ≤ F(n− a,k, |X|). Also for any x ∈ T (y, IA),
since x([n]\ IA) ∈ A(n−a)

ε we have

p(x)≤ 2−(n−a)(H(X)−ε)

Since the rows are i.i.d. we have

P(X2 ∈ T (y, IA)|X1 ∈ T (y, IA)) = P(X2 ∈ T (y, IA))

Then Pcol,2 can be bounded as

Pcol,2 = P(X2 ∈ T (y, IA))

= ∑
x∈T (y,IA)

p(x)

≤ ∑
x∈T (y,IA)

2−(n−a)(H(X)−ε)

≤ 2−(n−a)(H(X)−ε)F(n−a,k, |X|)

≤ (n−a)2−(n−a)(H(X)−ε−Hb( k
n−a ))(|X|−1)n−a−k (2)

Combining (2) with (1), we have

Pe ≤ (n−a)2−n[(1− a
n )(H(X)−ε−Hb( k

n−a ))−R](|X|−1)n−a−k

+ ε +κn +µn

≤ ε



as n→ ∞ if

R <
[(

1− a
n

)(
H(X)− ε−Hb

(
k

n−a

))
−
(

1− a
n− k

)
n− k

n
log(|X|−1)

]+

Thus, we can argue that any rate R satisfying

R <
[
(1−αδ )

(
H(X)−Hb

(
1−δ

1−αδ

))
− (1−α)δ log(|X|−1)

]+
is achievable by taking ε , ε̃ and ε̂ small enough.

Corollary 1. (No Deletion Location Information) In the ab-
sence of deletion location information (α = 0), any database
growth rate R satisfying

R < [H(X)−Hb(δ )−δ log(|X|−1)]+

is achievable.

Corollary 2. (Full Deletion Location Information) In the
presence of full deletion location information (α = 1), any
database growth rate R satisfying

R < (1−δ )H(X)

is achievable.

The achievable rate as a function of the deletion probability
for different the deletion detection probabilities is illustrated
in Figure 2.

Note that since the deletion pattern across rows is not
exploited in Theorem 1, Corollary 1 is closely related to
the deletion channel rate [9], while Corollary 2 is related
to the erasure channel capacity. However, in contrast to the
channel capacity results, in the database matching problem,
the database distribution pX is fixed and cannot be optimized.

IV. DELETION DETECTION

In Section III, we assumed a given deletion detection
probability α and found a corresponding achievable database
growth rate. However, in practice one may not have such
a partial deletion location information. One could have a
correctly-matched set of rows as seeds ( [12], [13]). In this
section, we assume we have access to a seed of B correctly-
matched rows of databases C (1) and C (2), denoted by D (1)

and D (2), respectively. Note that having access to a batch of
correctly-matched rows does not immediately reveal the dele-
tion locations because many different deletion patterns may
lead to the same row in C (2). We propose an algorithm which
extracts deletion location information from B given seeds by
exploiting the fact that the deletion occurs columnwise. Then
we derive a lower bound on the deletion detection probability
of our algorithm.

Given two sets of correctly-matched rows D (1) and D (2), let
S(D (1),D (2)) denote the number of column deletion patterns
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Fig. 2. Achievable database growth rate (R) vs. deletion probability (δ ) for
different deletion detection probabilities (α), when X ∼ Bernoulli( 1

2 ). Notice
that for δ ≈ 0.4 there is a twenty-fold difference between the achievable
rates in the presence (α = 1) and absence (α = 0) of the deletion location
information, showing the significance of deletion detection, for fairly large δ .

through which D (2) can be obtained from D (1). Here the
counting function S is an extension of a similar counting
function, described in [14], to the columnwise deletion case.

A simple application of Bayes’ theorem gives us the fol-
lowing proposition:

Proposition 2. Let ID ⊂ [n] be the set of deletion indices.
Given a batch of B seeds D (1),D (2), the posterior deletion
probability of a column j ∈ [n] is

P( j ∈ ID|D (1),D (2)) =
S(D̃ (1)

j ,D (2))

S(D (1),D (2))

where D̃
(1)
j is obtained by removing the jth column of D (1)

and appending the rest of the columns.

Our proposed algorithm classifies columns into the set of
deleted columns, the set of retained columns, and the set of
columns where the algorithm fails to make a decision, based
on the posterior deletion probabilities given in Proposition 2,
calculated for a given batch of B correctly-matched rows.

Let A(B)
ε be the ε-typical set associated with pX with param-

eter B, K be the (random) number of columns in D (2) and D j
denote the jth column of D (1). Given a batch of correctly-
matched pairs of B rows, we first calculate the posterior
probability vector P = [P1, ...,Pn] from Proposition 2. We then
define the deletion detection function f : XB×n×XB×K× [n]→
{0,1, inc} by

f (D (1),D (2), j) =


0, Pj = 0 and D j ∈ A(B)

ε

1, Pj = 1 and D j ∈ A(B)
ε

inc, otherwise

Here f (D (1),D (2), j) = 1 implies that the jth column is
certainly deleted while f (D (1),D (2), j) = 0 implies that the
jth column is certainly retained. Otherwise we do not make a
decision and denote this inconclusive result by inc.



A lower bound on the performance of the deletion detection
function f in terms of the probability of detecting a deleted
column is provided in the next theorem.

Theorem 3. For the database matching problem in Section
II, assume no partial deletion location information, (α = 0).
Let D (1),D (2) be a batch of correctly-matched B rows of
the unlabeled database C (1), and the corresponding column
deleted database C (2). Then

P( f (D (1),D (2), j) = 1| j ∈ ID)≥ 1− ε−n2−B(H(X)−ε)(1−δ )

Proof. Consider a simpler deletion detection function which
decides if a column is deleted or not by looking at the existence
of the columns of D (1) in D (2). Since no noise is present
on the retained columns, if a column is missing from D (2),
this function decides that the column is deleted, otherwise it
doesn’t make any decision. We define this simpler function as
g : XB×n×XB×K× [n]→{1, inc} where

g(D (1),D (2), j) =


1, D j is not a column of D (2)

and D j ∈ A(B)
ε

inc, otherwise

Note that the function f focuses on both the order and the ex-
istence of the columns of D (1) in D (2) whereas g only focuses
on the existence. Furthermore, if D j is not a column of D (2),
one can discard it from D (1) when counting the number
patterns D (2) occurs columnwise in D (1). In other words if,
D j is not a column of D (2), then

S(D (1),D (2)) = S(D̃ (1)
j ,D (2))

Thus g(D (1),D (2), j) = 1 implies that f (D (1),D (2), j) = 1. For
brevity, let α = P( f (D (1),D (2), j) = 1| j ∈ ID). Then using
the fact that the columns D j are i.i.d. and the deletion is
independent of D (1), we have the following

1−α = P( f (D (1),D (2), j) 6= 1| j ∈ ID)

≤ P(g(D (1),D (2), j) 6= 1| j ∈ ID)

= P(D j is a column of D (2)| j ∈ ID,D j ∈ A(B)
ε )

P(D j ∈ A(B)
ε )+P(D j /∈ A(B)

ε )

≤ P(∃i 6= j,D j = Di, i /∈ ID| j ∈ ID,D j ∈ A(B)
ε )+ ε

≤ P(∃i 6= j,D j = Di, i /∈ ID|D j ∈ A(B)
ε )+ ε

≤
n

∑
i=1;i6= j

P(D j = Di|i /∈ ID,D j ∈ A(B)
ε )P(i /∈ ID)+ ε

=
n

∑
i=1;i6= j

P(Di = D j|D j ∈ A(B)
ε )P(i /∈ ID)+ ε

≤
n

∑
i=1;i6= j

2−B(H(X)−ε)(1−δ )+ ε

≤ n2−B(H(X)−ε)(1−δ )+ ε

which completes the proof.

Corollary 3. To guarantee P( f (D (1),D (2), j) = 1| j ∈ ID)≥α ,
a batch size of B≥ 1

H(X) log
(

n 1−δ

1−α

)
is needed. This suggests

that a seed size of O(logn) = O(log logm) ensures a non-
zero deletion detection probability α . Furthermore if B grows
slower than logn, the lower bound becomes trivial.

Corollary 4. If B = ω(logn) = ω(log logm), for large n, we
have P( f (D (1),D (2), j) = 1| j ∈ ID)≥ 1− ε .

In Theorem 1, we assumed that detection of each deleted
column is independent of the remaining deleted columns.
However, the deletion detection discussed in this section does
not necessarily lead to independence. In fact, no algorithm
which extracts the deletion locations from databases directly
can lead to an i.i.d. detection process. For example, con-
sider two adjacent columns with identical entries, both being
deleted. We can detect deletion of either both columns or none.

V. CONCLUSION

In this work, we have studied a database matching problem
under random column deletions. We have found an achievable
database growth rate as a function of deletion detection
probability α and showed that a nonzero α can significantly
improve the achievable rate. Then assuming no initial deletion
location information (α = 0), we have proposed an algorithm
for detecting deletion locations when a batch of B correctly-
matched seed rows are given. We have found that in order for
this algorithm to guarantee a non-zero detection probability,
we need B = O(logn) = O(log logm). Our ongoing work
considers matching at the database level rather than matching
each row separately, potentially leading to higher achievable
rates.
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