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Abstract

The re-identification or de-anonymization of users from anonymized data through matching with

publicly available correlated user data has raised privacy concerns, leading to the complementary measure

of obfuscation in addition to anonymization. Recent research provides a fundamental understanding

of the conditions under which privacy attacks, in the form of database matching, are successful in

the presence of obfuscation. Motivated by synchronization errors stemming from the sampling of

time-indexed databases, this paper presents a unified framework considering both obfuscation and

synchronization errors and investigates the matching of databases under noisy entry repetitions. By

investigating different structures for the repetition pattern, replica detection and seeded deletion detection

algorithms are devised and sufficient and necessary conditions for successful matching are derived.

Finally, the impacts of some variations of the underlying assumptions, such as the adversarial deletion

model, seedless database matching, and zero-rate regime, on the results are discussed. Overall, our results

provide insights into the privacy-preserving publication of anonymized and obfuscated time-indexed data

as well as the closely related problem of the capacity of synchronization channels.

Index Terms

dataset, database, matching, de-anonymization, alignment, recovery, data, privacy, synchronization

I. INTRODUCTION

With the exponential boom in smart devices and the growing popularity of big data, companies

and institutions have been gathering more and more personal data from users which is then
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either published or sold for research or commercial purposes. Although the published data is

typically anonymized, i.e., explicit identifiers of the users, such as names and dates of birth are

removed, there has been a growing concern over potential privacy leakage from anonymized data,

approached from legal [1] and corporate [2] points of view. These concerns are also articulated in

the respective literature through successful practical de-anonymization attacks on real data [3]–

[17]. Obfuscation, which refers to the deliberate addition of noise to the database entries, has

been suggested as an additional measure to protect privacy [6]. While extremely valuable, this

line of work does not provide a fundamental and rigorous understanding of the conditions under

which anonymized and obfuscated databases are prone to privacy attacks.

In the light of the above practical privacy attacks on databases, several groups initiated rigorous

analyses of the graph matching problem [18]–[27]. Correlated graph matching has applications

beyond privacy, such as image processing [28], computer vision [29], single-cell biological data

alignment [30], [31] and DNA sequencing, which is shown to be equivalent to matching bipartite

graphs [32]. Matching of correlated databases, also equivalent to bipartite graph matching, has

also been investigated from information-theoretic [33]–[38] and statistical [39] perspectives. In

[33], Cullina et al. introduced cycle mutual information as a correlation metric and derived

sufficient conditions for successful matching and a converse result using perfect recovery as the

error criterion. In [34], Shirani et al. considered a pair of anonymized and obfuscated databases

and drew analogies between database matching and channel decoding. By doing so, they derived

necessary and sufficient conditions on the database growth rate for reliable matching, in the

presence of noise on the database entries. In [35], Dai et al. considered the matching of

a pair of databases with joint Gaussian attributes with perfect recovery constraint. Similarly,

in [39], Kunisky and Niles-Weed considered the same problem from the statistical perspective

in different regimes of database size and under several recovery criteria. In [40], Kahraman

and Nazer investigated the necessary and the sufficient conditions for detecting whether two

Gaussian databases are correlated. More recently, motivated by the need for aligning single-

cell data obtained from multiple biological sources/experiments [30], [31], in [41] Chen et al.

investigated the matching of two noisy databases which are the noisy observations of a single

underlying database under the fractional-error criterion, where the noise is assumed to be the

Gaussian. They proposed a data-driven approach and analytically derived minimax lower bounds

for successful matching.

Motivated by the synchronization errors in the sampling of time-indexed datasets, in this
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Fig. 1. An illustrative example of database matching under identical repetition, where each row experiences the same
synchronization error. The columns circled in red are deleted whereas the fourth column, which is circled in blue, is repeated
twice, i.e., replicated. For each (i, j), Yi,j is the noisy observation of Xi,j . Furthermore, for each i, Yi,4(1) and Yi,4(2) are
noisy replicas of Xi,4. Our goal is to estimate the row permutation σn which is in this example given as; σn(1) = 5, σn(2) = 1,
σn(3) = 4, σn(4) = 3 and σn(5) = 2, by matching the rows of X and Y. Here the ith row of X corresponds to the σn(i)

th

row of Y.

paper, we present a unified generalized framework of the database matching problem under

noisy synchronization errors with near-exact recovery criterion. Specifically, we investigate the

matching of Markov databases under arbitrary noise and synchronization errors. Our goal is to

investigate necessary and sufficient conditions on the database growth rate [34] for the successful

matching of database rows. The generalized Markov database model captures correlations of the

attributes (columns), where synchronization errors, in the form of random entry deletions and

replications, are followed by noise. As such, this paper generalizes the aforementioned work on

database matching under only noise. Our setting is illustrated in Figure 1.

We consider two extreme regimes regarding the nature of synchronization errors, as results

derived for these corner cases provide insights into the intermediate regime. To this end, first, we

focus on the identical repetition setting where the repetition pattern is constant across rows. In

other words, in this setting, deletions and replications only take place columnwise. We consider

a two-phase matching scheme, where we first infer the underlying repetition structure by using

permutation-invariant features of columns. This is followed by the matching phase which relies

on the known replica and deletion locations. We show that as long as the databases are not

independent, in the first phase, replicas can be found with high probability through a series

of hypothesis tests on the Hamming distances between columns. Furthermore, assuming seed

rows whose identities are known in both databases [42], [43] we show that if the seed size

Λn grows double-logarithmically with the number of rows mn, where n denotes the column

size, deletion locations can also be extracted. In the absence of noise, seeds are not needed
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and column histograms can be used to detect both replicas and deletions. Once the repetition

(including deletions and replications) locations are identified, in the second phase, we propose a

joint typicality-based row matching scheme to derive sufficient conditions on the database growth

rate for successful matching. Finally, we prove a tight converse result through a modified version

of Fano’s inequality, completely characterizing the matching capacity when the repetition pattern

is constant across the rows.

Next, we focus on the other extreme, namely the independent repetition setting where the

repetition pattern is independent in each row and there is no underlying repetition structure across

rows. Under probabilistic side information on the deletion locations, we propose a row-matching

scheme and derive an achievable database growth rate. This, together with an outer bound

obtained through Fano’s inequality, provides upper and lower bounds on the matching capacity

in the independent repetition setting. Comparing the bounds in the two extremes, we show that

the matching capacity is lower and hence matching is more difficult under the independent

repetition model. Finally, based on these two extreme models, we state bounds on the matching

capacity for any intermediate repetition structure.

We also discuss the adversarial repetition model, where we assume that synchronization errors,

in the form of column deletions, are chosen by a constrained adversary whose goal is to hinder

the matching of databases, where the constraint is in the form of a fractional column deletion

budget which naturally provides a trade-off between utility and privacy. Since this adversarial

model forces us to focus on the worst-case scenario and in turn, prohibits the use of typicality and

Fano’s inequality, we propose an exact sequence matching and perform a more careful analysis

of the worst-case error, focusing on the Hamming distances between the rows (users) of the

databases, as is the case in the adversarial channel literature [44]. Under the identical repetition

model, we completely characterize the adversarial matching capacity.

In addition to the characterization of the matching capacity under various assumptions, our

results provide sufficient conditions on the number and the size for column histograms to be

asymptotically unique. Since histograms naturally show up frequently in information theory,

probability theory, and statistics, this result could be of independent interest. In addition, our

novel matching scheme in the independent repetition case can be directly converted to a decoding

strategy for input-constrained noisy synchronization channels, a well-investigated model in the

information theory literature [45]–[48].
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A. Paper Organization

The organization of this paper is as follows: Section II contains the problem formulation and

the preliminaries. In Section III, our main results on the matching capacity under the identical

repetition model are presented. Section IV contains our main results on the matching capacity

under the independent repetition assumption. In Section V, we discuss the underlying model

assumptions and investigate how variations on these assumptions impact some of the results.

Finally, in Section VI the results and ongoing work are discussed.

B. Notations

In this paper, we use the following notations:

• [n] denotes the set of integers {1, ..., n}.

• Matrices are denoted with uppercase bold letters. For a matrix X, Xi,j denotes the (i, j)th

entry.

• an denotes a row vector consisting of scalars a1, . . . , an.

• Random variables are denoted by uppercase letters while their realizations are denoted by

lowercase ones.

• The indicator of event E is denoted by 1E .

• H and Hb denote the Shannon entropy and the binary entropy functions [49, Chapter 2],

respectively.

• O, o, Θ, ω and Ω denote the standard asymptotic growth notations [50, Chapter 3].

• DKL(pX∥qX) denotes the Kullback-Leibler divergence [49, Chapter 2.3] between the proba-

bility distributions pX and qX . For scalars p, q ∈ (0, 1), D(p∥q) denotes the Kullback-Leibler

divergence between two Bernoulli distributions with respective parameters p and q. More

formally,

D(p∥q) = (1− p) log 1− p
1− q

+ p log
p

q
(1)

• The logarithms, unless stated explicitly, are in base 2.

II. PROBLEM FORMULATION & PRELIMINARIES

A. Problem Formulation

We use the following definitions, some of which are similar to [34], [36], [38], to formally

describe our problem.

October 25, 2023 DRAFT



6

Definition 1. (Unlabeled Markov Database) An (mn, n,P) unlabeled Markov database is a

randomly generated mn × n matrix X = {Xi,j ∈ X : i ∈ [mn], j ∈ [n]} whose rows are i.i.d. and

follow a first-order stationary Markov process defined over the alphabet X = {1, . . . , |X|} with

probability transition matrix P such that

P = γI+ (1− γ)U (2)

Ui,j = uj > 0, ∀(i, j) ∈ X2 (3)∑
j∈X

uj = 1 (4)

γ ∈ [0, 1) (5)

where I is the identity matrix. It is assumed that Xi,1
i.i.d.∼ π = [u1, . . . , u|X|], i = 1, . . . ,mn, where

π is the stationary distribution associated with P.

Note that Definition 1 yields the following n-letter probability model for row generation:

Pr(Xn = xn) = ux1

n∏
j=2

[
(1− γ)uxj

+ γ1[xj=xj−1]

]
, ∀xn ∈ Xn (6)

Observe that, the parameter γ determines the correlation among the columns of X. Specifically,

γ = 0 corresponds to the case where Xi,j are i.i.d.

In our work, we are mainly interested in two extreme cases of the repetition pattern:

• Every row of X experiences the same repetition pattern which we call identical repetition.

• Rows of X experience i.i.d. repetition patterns which we call independent repetition.

The formal definitions of these two scenarios are provided in Definitions 2-3 where the main

difference comes from the repetition pattern Sn (Definition 2) and repetition matrix (Definition 3).

Definition 2. (Labeled Repeated Database under Identical Repetition) Let X be an (mn, n,P)

unlabeled Markov database, Sn be vector of length n with Sj being i.i.d. entries drawn from a

discrete probability distribution pS with a finite integer support {0, . . . , smax}, σn be a uniform

permutation of [mn] with X, Sn and σn independently chosen. Also, let pY |X be a conditional

probability distribution with both X and Y taking values from X. Given X, Sn and pY |X , the

random matrix Y is called the labeled repeated database under ıdentical repetition if the ith row
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Xn
i of X and the σn(i)th row Y Kn

σn(i)
= [Yσn(i),1, . . . , Yσn(i),Kn ] of Y have the following relation:

Pr(Y Kn

σn(i)
= yKn|Xn

i = xn)

=
∏

j:Sj ̸=0

Pr((Yσn(i),Kj−1+1, . . . , Yσn(i),Kj
) = (yKj−1+1, . . . , yKj

)|Xi,j = xj) (7)

=
∏

j:Sj ̸=0

Sj∏
s=1

pY |X(yKj−1+s|xj) (8)

where

Kj ≜
j∑

t=1

St (9)

Here Sn and σn are called the repetition pattern and labeling function, respectively.

Note that Sj indicates the times Xi,j is repeated (including deletions and replications). When

Sj = 0, Xi,j is said to be deleted (repeated zero times) and when Sj > 1, Xi,j is said to be

replicated Sj times (repeated Sj times). δ ≜ pS(0) is called the deletion probability.

The respective rows Xn
i1

and Y Kn
i2

of X and Y are said to be matching rows, if σn(i1) = i2.

Definition 3. (Labeled Repeated Database under Independent Repetition) Let X be an

(mn, n,P) unlabeled Markov database, S be an mn × n matrix with Si,j i.i.d. from a discrete

probability distribution pS with a finite integer support {0, . . . , smax}, σn be a uniform permuta-

tion of [mn] with X, S and σn independently chosen. Also, let pY |X be a conditional probability

distribution with both X and Y taking values from X. Given X, S and pY |X , the random matrix

Y is called the labeled repeated database under independent repetition if the ith row Xn
i of X

and the σn(i)th row Y
Kσn(i),n

σn(i)
= [Yσn(i),1, . . . , Yσn(i),Kσn(i),n

] of Y have the following relation:

Pr(Y
Kσn(i),n

σn(i)
= yKσn(i),n|Xn

i = xn)

=
∏

j:Sσn(i),j ̸=0

Pr((Yσn(i),Kσn(i),j−1+1, . . . , Yσn(i),Kσn(i),j
) = (yKσn(i),j−1+1, . . . , yKσn(i),j

)|Xi,j = xj)

(10)

=
∏

j:Sσn(i),j ̸=0

Sσn(i),j∏
s=1

pY |X(yKσn(i),j−1+s|xj) (11)
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where

Ki,j ≜
j∑

t=1

Si,t (12)

Here S and σn are called the repetition matrix and labeling function, respectively.

Note that Sσn(i),j indicates the times Xi,j is repeated (including deletions and replications).

When Sσn(i),j = 0, Xi,j is said to be deleted (repeated zero times) and when Sσn(i),j > 1, Xi,j

is said to be replicated Sσn(i),j times (repeated Sσn(i),j times). δ ≜ pS(0) is called the deletion

probability.

The respective rows Xn
i1

and Y Ki2,n

i2
of X and Y are said to be matching rows, if σn(i1) = i2.

In our model, the labeled repeated database Y is obtained by permuting the rows of the

unlabeled Markov database X with the uniform permutation σn followed by repetition based

on the repetition pattern Sn (Definition 2) or repetition matrix S (Definition 3) and introduction

of noise through pY |X . The relationship between X and Y, as described in Definitions 2-3, is

illustrated in Figure 2. As we formalize later, the goal is to recover the labeling function σn

based on the observations of X and Y.

Equations (7)-(8) (resp. (10)-(11)) state that we can treat Yσn(i),j as the output of the discrete

memoryless channel (DMC) pY |X with input sequence consisting of Sj (resp. Sσn(i),j) copies of

Xi,j concatenated together. We stress that pY |X is a general model, capturing any distortion and

noise on the database entries, though we refer to this as “noise” in this paper.

We will observe that these two models pose different challenges to matching and in turn

necessitate different solutions with different implications.

In most of the paper, we assume a random repetition pattern as in Definitions 2-3. In Sec-

tion V-A, we will discuss the effects of an adversarial worst-case repetition pattern. Note that

in this paper, we assume that pX,Y and pS are available during the matching. For a study of

distribution-agnostic database matching, see [51].

As discussed in Section III, inferring the repetition pattern, particularly deletions, is a difficult

task. Therefore, for the identical repetition pattern, we assume the availability of seeds to help

with the inference of the underlying repetition pattern, similar to database matching [36] and

graph matching [42], [43] settings.

Definition 4. (Seeds) A seed is a pair of matching rows whose labels and entries are known
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X Y
Noise
pY |X

Row Shuffling
σn

Repetition

Fig. 2. Relation between the unlabeled database X and the correlated repeated database Y. Repetition is represented by the
repetition pattern Sn (Definition 2) or the repetition matrix S (Definition 3).

universally. A batch of Λn seeds (G(1),G(2)) is a batch of Λn correctly-matched row pairs. Here

G(1) ∈ XΛn×n has the same row generation process as X, (G(1),G(2)) have the same relation as

(X,Y), as described in Definition 2 with the same noise distribution pY |X and repetition pattern

Sn. Λn is called the seed size.

Note that in Definition 4, for notational convenience, the seeds are assumed to be additional

to the databases.

Throughout Section III, we assume a double logarithmic seed size Λn = Ω(log logmn). We

will discuss the effects of not having seeds in Section V-B.

In the independent repetition setting, the seeds offer no additional information, as the repetition

pattern is independent in each row. Instead, we assume that the locations of some deleted entries

are revealed. This is formalized in the following definition:

Definition 5. (Partial Deletion Location Information) For a labeled repeated database under

independent repetition (Definition 3), the partial deletion location information A is an mn × n

random matrix, with the following conditional distribution on repetition matrix S:

Pr(Ai,j = 1|S) = α1[Si,j=0] (13)

where Ai,j = 1 corresponds to Xσ−1
n (i),j being revealed as deleted and Ai,j = 0 corresponds to

either Xσ−1
n (i),j not being deleted or not being revealed after deletion. The parameter α ∈ [0, 1]

is called the deletion detection probability.

Definition 5 states that the location of each deleted entry is revealed with probability α.

Since the entries of S are i.i.d. and S and X are independent, each deleted column is revealed

independently of the other columns of S and X. Furthermore, since Si,j are drawn i.i.d., so are

Ai,j .

Definition 6. (Successful Matching Scheme) In the identical (resp. independent) repetition
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setting, a matching scheme is a sequence of mappings ϕn : (X,Y,G(1),G(2)) 7→ σ̂n (resp.

ϕn : (X,Y,A) 7→ σ̂n) where X is the unlabeled Markov database, Y is the labeled repeated

database, (G(1),G(2)) are seeds (resp. A is the partial deletion location information) and σ̂n is

the estimate of the correct labeling function σn. The scheme ϕn is successful if

Pr (σ̂n(J) ̸= σn(J))→ 0 as n→∞ (14)

where the index J is drawn uniformly from [mn].

Observe that the performance criterion considered in Definition 6 allows a sublinear fraction

of the rows to be mismatched. This near-perfect performance criterion allows us to utilize

communication and information-theoretic tools and work with arbitrary distributions whereas

as far as we are aware the prior work considering the perfect recovery criterion mainly focuses

on one specific distribution. This success criterion is also known as near-perfect or almost-perfect

recovery [39]. Other success definitions include perfect recovery [33], [35], [39], where all rows

have to be perfectly aligned, and weak-recovery or linear-error [39] where a constant fraction

of the rows is allowed to be mismatched. For an extensive comparison of the Gaussian database

alignment results under these different performance criteria, please see [39].

We stress that in database matching, the relationship between the row size mn, the column

size n, and the database distribution parameters are of interest [39], [40], [52]. Note that for

fixed column size n, as the row size mn increases, matching becomes harder. This is because

for a given column size n, as the row size mn increases, so does the probability of mismatch

as a result of having a larger candidate row set. Furthermore, as stated in [39, Theorem 1.2],

for distributions with parameters constant in n and mn, the regime of interest is the logarithmic

regime where n ∼ logmn. Thus, we utilize the database growth rate introduced in [34] to

characterize the relationship between the row size mn and the column size n.

Definition 7. (Database Growth Rate) The database growth rate R of an (mn, n,P) unlabeled

Markov database is defined as

R = lim
n→∞

1

n
logmn (15)

In Sections III and IV, we assume that the database growth rate R is positive and mn = 2nR

for notational simplicity. We will discuss the zero-rate regime R = 0 in Section V-C.
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Definition 8. (Achievable Database Growth Rate) Consider a sequence of (mn, n,P) unlabeled

Markov databases, a repetition probability distribution pS , a noise distribution pY |X and the

resulting sequence of labeled repeated databases under identical (resp. independent) repetition.

For a seed size Λn (resp. a deletion detection probability α), a database growth rate R is said

to be achievable if there exists a successful matching scheme when the unlabeled database has

a growth rate R.

Definition 9. (Matching Capacity) Under identical (resp. independent) repetition, the matching

capacity C is the supremum of the set of all achievable rates corresponding to a probability

transition matrix P, repetition probability distribution pS , noise distribution pY |X , and seed size

Λn (resp. a deletion detection probability α).

In this paper, our goal is to characterize the matching capacity under the two extreme repetition

structures, namely identical repetition and independent repetition, respectively, by providing

database matching schemes as well as upper bounds on all achievable database growth rates.

B. Preliminaries

For the sake of completeness, we present below some of the classical information-theoretic

definitions and results, most of which are borrowed from [34], [49], that will be used throughout

this paper.

Definition 10. (Entropy Rate) For the discrete random process X characterized by pXn , with

n ∈ N, the entropy rate is defined as:

H(X ) ≜ lim
n→∞

E[− log pXn+1|Xn(Xn+1|Xn)]. (16)

when the limit exists.

Definition 11. (Typicality) The ϵ-typical set associated with the discrete random process X is

defined as

A(n)
ϵ (X) ≜

{
xn :

∣∣∣∣− 1

n
log pXn(xn)−H(X )

∣∣∣∣ ≤ ϵ

}
(17)

where H(X ) is the entropy rate of X .
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Definition 12. (Joint Typicality) The ϵ-typical set associated with the discrete random processes

(X ,Y) is defined as

A(n)
ϵ (X, Y ) ≜

{
(xn, yn) :

∣∣∣∣− 1

n
log pXn,Y n(xn, yn)−H(X ,Y)

∣∣∣∣ ≤ ϵ

}
(18)

where H(X ,Y) is the entropy rate of (X ,Y).

Lemma 1. (Generalized AEP [53, Theorem 1]) For the discrete stationary random process X

characterized by pXn , with n ∈ N, we have

− 1

n
log pXn(xn)

a.s.→ H(X ). (19)

Along with standard information-theoretical arguments, Lemma 1 leads to the following:

Proposition 1. (Typicality) For a ϵ-typical sequence xn ∈ A(n)
ϵ (X) we have

2−n(H(X )+ϵ) ≤ pXn(xn) ≤ 2−n(H(X )−ϵ) (20)

Furthermore,

2n(H(X )−ϵ) ≤ |A(n)
ϵ (X)| ≤ 2n(H(X )+ϵ) (21)

for large n.

Proposition 2. (Joint Typicality) For a ϵ-typical sequence pair (xn, yn) ∈ A(n)
ϵ (X, Y ) we have

2−n(H(X ,Y)+ϵ) ≤ pXn,Y n(xn) ≤ 2−n(H(X ,Y)−ϵ) (22)

Furthermore,

2n(H(X ,Y)−ϵ) ≤ |A(n)
ϵ (X, Y )| ≤ 2n(H(X ,Y)+ϵ) (23)

for large n.

Proposition 3. (Joint AEP) Consider a correlated pair of stochastic processes (X ,Y) character-

ized by pXn,Y n , with n ∈ N. Let X̃n and Ỹ n be generated according to the marginal distributions

pXn and pnY , independently. Then, the following holds:

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ (X, Y )) ≤ 2−n(I(X;Y )−3ϵ) (24)
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where I(X;Y ) ≜ H(X ) +H(Y)−H(X ,Y) is the mutual information rate. Furthermore,

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ (X, Y )) ≥ (1− ϵ)2−n(I(X;Y )+3ϵ) (25)

for large n.

III. MATCHING CAPACITY FOR IDENTICAL REPETITION

In this section, we present the matching capacity C for an identical repetition pattern with seed

size Λn = Ω(log logmn). We will show that when Λn = Ω(log logmn), the repetition pattern,

including the deletion locations, can be inferred.

We state the main result of this section in Theorem 1 and prove its achievability by proposing

a three-step approach: i) noisy replica detection and ii) deletion detection using seeds, followed

by iii) row matching. Then, we prove the converse part. Finally, we focus on the noiseless setting

as a special case where we prove that we can devise a new detection algorithm specific to the

noiseless model which renders the seeds obsolete.

Theorem 1. (Matching Capacity for Identical Repetition) Consider a probability transition

matrix P, a column repetition distribution pS with an identical repetition pattern, and a noise

distribution pY |X . Then, for a seed size Λn = Ω(log logmn), the matching capacity is

C = lim
n→∞

I(Xn;Y Kn , Sn)

n
(26)

where Xn is a Markov chain with probability transition matrix P and stationary distribution π,

Si
iid∼ pS and

Pr(Y Kn = yKn|Xn = xn) =
∏

j:Sj ̸=0

Pr((YKj−1+1, . . . , YKj
) = (yKj−1+1, . . . , yKj

)|Xj = xj) (27)

=
∏

j:Sj ̸=0

Sj∏
s=1

pY |X(yKj−1+s|xj) (28)

where Kj ≜
j∑

t=1

St.

Because of the independence of Xn and Sn, (26) can also be represented as

C = lim
n→∞

I(Xn;Y Kn|Sn)

n
. (29)
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Hence, Theorem 1 states that although the repetition pattern Sn is not known apriori, for a seed

size Λn = Ω(log logmn), we can achieve a database growth rate as if we knew Sn. Since the

utility of seeds increases with the seed size Λn, we will focus on Λn = Θ(log logmn), which

we show is sufficient to achieve the matching capacity.

Even though the specific Markov row generation process, assumed in Definition 1, does not

show up in (26), it plays a significant role in the estimation of the repetition pattern Sn, as can

be seen in Appendices A-C.

Corollary 1. (Matching Capacity for Identical Repetition with I.I.D. Database Entries) When

γ = 0, resulting in an i.i.d. database distribution pX(x) = ux, ∀x ∈ X, the matching capacity is

C = I(X;Y S|S) (30)

where S ∼ pS and Y S = Y1, . . . , YS such that

Pr(Y S = y1, . . . , yS|X = x) =


S∏

i=1

pY |X(yi|x), if s > 0

1[yS=E], if s = 0

(31)

and E denotes the empty string.

The rest of this section is on the proof of Theorem 1. In Section III-A, we discuss our noisy

replica detection algorithm which does not utilize the seeds and prove its asymptotic performance.

In Section III-B, we introduce a deletion detection algorithm that uses seeds and derive a seed

size sufficient for an asymptotic performance guarantee. Then, in Section III-C, we combine

these two algorithms and prove the achievability of Theorem 1 by proposing a typicality-based

matching scheme for rows, which is performed once replicas and deletions are detected. In

Section III-D, we prove the converse part of Theorem 1. Finally, in Section III-E, we focus on

the special case of no noise on the repeated entries and provide a single repetition (replica and

deletion) detection algorithm that does not require any seeds.

Note that when the two databases are independent, Theorem 1 states that the matching capacity

becomes zero, hence our results trivially hold. As a result, throughout this section, we assume

that the two databases are not independent.
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Algorithm 1: Noisy Replica Detection Algorithm
Input : (Y,P, pY |X)
Output: isReplica
H ← RunningHammingDist(Y); /* Eq. (32) */
τ ←ThresholdSelection(P, pY |X); /* Threshold selection. See Appendix A. */
isReplica ← ∅;
for j = 1 to columnSize(Y)−1 do

if H[j] ≤ τ ∗ rowSize(Y) then
isReplica[j]← TRUE;

else
isReplica[j]← FALSE;

end
end

A. Noisy Replica Detection

We propose to detect the replicas by extracting permutation-invariant features of the columns

of Y. Our algorithm only considers the columns of Y and as such, can only detect replicas,

not deletions. Note that our replica detection algorithm does not require any seeds unlike seeded

deletion detection discussed in Section III-B.

Our proposed replica detection algorithm (Algorithm 1) adopts the Hamming distance between

consecutive columns of Y as a permutation-invariant feature of the columns. The permutation-

invariance allows us to perform replica detection on Y with no prior information on σn.

Let Kn denote the number of columns of Y, Cmn
j denote the j th column of Y, j = 1, . . . , Kn.

The replica detection algorithm works as follows: We first compute the Hamming distances Hj

between consecutive columns Cmn
j and Cmn

j+1, for j ∈ [Kn − 1]. More formally,

Hj ≜
mn∑
t=1

1[Yt,j+1 ̸=Yt,j ], ∀j ∈ [Kn − 1] (32)

For some average Hamming distance threshold τ ∈ (0, 1) chosen based on P and pY |X (See

Appendix A), the algorithm decides that Cmn
j and Cmn

j+1 are replicas only if Hj < mnτ , and

correspond to distinct columns of X otherwise. In the following lemma, we show that Algorithm 1

can infer the replicas with high probability. Observe that the runtime of Algorithm 1 is O(mnn),

the computational bottleneck being the computation of {Hj}Kn−1
j=1 .

Lemma 2. (Noisy Replica Detection) Let Fj denote the event that the Hamming distance-based

algorithm described above fails to infer the correct replica relationship between the columns
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Cmn
j and Cmn

j+1 of Y, j = 1, . . . , Kn − 1. The total probability of replica detection error of

Algorithm 1 diminishes as n→∞, that is

Pr(
Kn−1⋃
j=1

Fj)→ 0 as n→∞. (33)

Proof. See Appendix A.

B. Deletion Detection Using Seeds

The replica detection algorithm discussed in Section III-A only uses Y and infers only the

replicas, not the deletions. We next propose a deletion detection algorithm that uses seeds.

Let (G(1),G(2)) be a batch of Λn = Θ(log logmn) seeds with the identical repetition pattern

Sn as (X,Y). Our deletion detection algorithm (Algorithm 2) works as follows: After finding

the replicas as in Section III-A, we discard all extra copies, keeping only the original entry in

a replica run with Sj > 1 from G(2), to obtain G̃(2), whose column size is denoted by K̂n. At

this step, we only have deletions.

Next, for each index pair (i, j) ∈ [n]× [K̂n], we compute the Hamming distance Li,j between

the ith column G(1)
i of G(1) and the j th column G(2)

j of G̃(2). More formally, we compute

Li,j ≜
Λn∑
t=1

1[
G

(1)
t,i ̸=G̃

(2)
t,j

]. (34)

Then, for each index i ∈ [n], the algorithm decides G(1)
i is retained (not deleted) only if there

exists a column G
(2)
j in G̃(2) with Li,j ≤ Λnτ̄ , for some average Hamming distance threshold

τ̄ ∈ (0, 1) chosen based on P and pY |X (See Appendix B). In this case, we assign Îi = 0,

where Îi is the indicator of G(1)
i being inferred as deleted. Otherwise, the algorithm decides G(1)

i

is deleted, assigning Îi = 1. At the end of this procedure, the algorithm outputs an estimate

În = (Î1, . . . , În) of the true deletion pattern Indel = (I1, . . . , In). Here, for each i ∈ [n] we have

Ii ≜ 1[Si=0] (35)

Îi ≜ 1[∃j∈[K̂n]: Li,j≤Λnτ̄] (36)

Note that such a Hamming distance-based strategy depends on pairs of matching entries in a

pair of seed rows in G(1) and G̃(2) having a higher probability of being equal than non-matching
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entries. More formally, WLOG, let Sj ̸= 0 and X̃i,j and Ỹi,j denote the respective (i, j)th entries of

G(1) and G̃(2). Given a matching pair (X̃i,j, Ỹi,j) of entries and any non-matching pair (X̃i,l, Ỹi,j),

l ̸= j we need

Pr(Ỹi,j ̸= X̃i,j) < Pr(Ỹi,j ̸= X̃i,l) (37)

which may not be true in general.

For example, suppose we have a binary uniform i.i.d. distribution, i.e., X = {0, 1} with γ = 0

and u1 = 1/2 (recall Definition 1). Further assume that pY |X follows BSC(q), i.e. pY |X(x|x) = 1− q,

x = 0, 1. Note that when q > 1/2, equation (37) is not satisfied. However, in this example, we

can flip the labels in Y by applying the bijective remapping Φ = ( 0 1
1 0 ) to Y in order to satisfy

equation (37).

Thus, as long as such a permutation Φ of X satisfying equation (37) exists, we can use

Algorithm 2. Now, suppose that such a mapping Φ exists. We apply Φ to the entries of G̃(2)

to construct G̃
(2)
Φ . Then, our deletion detection algorithm follows the above steps computing

Li,j(Φ) for each index pair (i, j) ∈ [n] × [K̂n] and outputs the deletion pattern estimate

În(Φ) = (Î1(Φ), . . . , În(Φ)) where

Li,j(Φ) ≜
Λn∑
t=1

1[
G

(1)
t,i ̸=G̃

(2)
Φt,j

]. (38)

Îi(Φ) ≜ 1[∃j∈[K̂n]: Li,j(Φ)≤Λnτ̄] (39)

and G
(2)
j (Φ) is the j th column of G̃

(2)
Φ . Note that the runtime of Algorithm 2 is O(n2Λn), the

computational bottleneck being the computation of L(Φ).

The following lemma states that such a bijective mapping Φ always exists and for a seed

size Λn = Θ(log n) = Θ(log logmn), this algorithm can infer the deletion locations with high

probability.

Lemma 3. (Seeded Deletion Detection) For a repetition pattern Sn, let Idel = {j ∈ [n]|Sj = 0}.

Then there exists a bijective mapping Φ such that equation (37) holds after the remapping. In

addition, for a seed size Λn = Θ(log n), using Algorithm 2, we have

Pr
(
Î(Φ) = Idel

)
→ 1 as n→∞. (40)
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Algorithm 2: Seeded Deletion Detection Algorithm
Input : (G(1),G(2),P, pY |X , isReplica)
Output: isDeleted
S(X)← SymmetryGroup(X);
for s← 1 to |X|! do

Φ← S(X)[s]; /* Pick a remapping. */
/* isUseful checks if Φ satisfies (37).*/
if isUseful(Φ,P, pY |X) then

break; /* Move on with Φ. */
end

end
G̃(2) ←ExtraReplicaRemoval(G(2),isReplica); /* Remove extra copies. */
G̃

(2)
Φ ←Remap(G̃(2),Φ); /* Apply remapping Φ. */

L(Φ)← ComputeHammingDist(G(1), G̃
(2)
Φ ); /* Eq. (38) */

τ̄ ←ThresholdSelection2(P, pY |X); /* Threshold selection. See Apprendix B. */
for i = 1 to columnSize(G(1)) do

for j = 1 to columnSize(G̃(2)
Φ ) do

if L(Φ)[i][j] ≤ τ̄ ∗ rowSize(G(1)) then
isDeleted[i]← FALSE;
break;

else
isDeleted[j]← TRUE;

end
end

end

Proof. See Appendix B.

We stress that the remapping Φ is utilized only on G(2) to detect the deletions, and is not

applied to Y during the matching process.

C. Row Matching Scheme and Achievability

Let Sn be the underlying column repetition pattern and Kn ≜
∑n

j=1 Sj be the number of

columns in Y. The matching scheme (Algorithm 3) we propose follows these steps:

1) Perform replica detection as in Section III-A. The probability of error in this step is denoted

by ρn.

2) Perform deletion detection using seeds as in Section III-B. The probability of error is denoted

by µn. At this step, we have an estimate Ŝn of Sn.
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Y K = [Y1, Y2, Y3, Y4, Y5, Y6, . . .]

[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
AdditionỸ = [Y1, Y2| ∗ |Y3, Y4, Y5|Y6| ∗ | . . .]

Fig. 3. An example of the construction of Ỹ, as described in Step 3 of the proof of Theorem 1 in Section III-C, illustrated
over a pair of rows Xn of X and Y K of Y. After these steps, in Step 4 we check the joint typicality of the rows Xn of X
and Ỹ of Ỹ.

3) Using Ŝn, place markers between the noisy replica runs of different columns to obtain Ỹ.

If a run has length 0, i.e. deleted, introduce a column consisting of erasure symbol ∗ /∈ X.

Note that provided that the detection algorithms in Steps 1 and 2 have performed correctly,

there are exactly n such runs, where the j th run in Ỹ corresponds to the noisy copies of the

j th column of σn ◦X if Sj ̸= 0, and an erasure column otherwise.

4) Fix ϵ > 0. Match the lth row Y Kn
l of Ỹ with the ith row Xn

i of X if Xn
i is the only row of X

jointly ϵ-typical with Y Kn
l according to pXn,Y Kn ,Sn , where Si

iid∼ pS and Y Kn = Y S1
1 , . . . , Y Sn

n

such that

pXn,Y K |Sn(xn, yk|sn) = pXn(xn)
∏
i:si>0

(
si∏
j=1

pY |X((y
si)j|xi)

) ∏
i:si=0

1[ysi=∗] (41)

with yk = ys1 . . . ysn . Assign σ̂n(i) = l. If there is no such jointly typical row, or there is

more than one, declare an error.

The runtime of Algorithm 3 is O(m2
nn) due to the typicality check (each O(n)) for all row pairs

(Xn
i , Y

Kn
j ) (i, j) ∈ [mn]

2.

The column discarding and the marker addition as described in Steps 3-4, are illustrated in

Figure 3.

We are now ready to prove the achievability of Theorem 1.

Proof of Achievability of Theorem 1. From the union bound and Proposition 3, the total proba-

bility of error of this scheme (as in (14)) can be bounded for large n as follows

Pe ≤ 2nR2−n(Ī(X;Y S ,S)−3ϵ) + ϵ+ ρn + µn (42)
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Algorithm 3: Typicality-Based Matching Scheme (Identical Repetition)
Input : (X,Y,P, pY |X , pS, ϵ,G

(1),G(2))
Output: σ̂n
isReplica← Algorithm 1(Y,P, pY |X); /* Step 1. */
isDeleted← Algorithm 2(G(1),G(2),P, pY |X ,isReplica); /* Step 2. */
Ŝn ← EstimateRepetitionPattern(isReplica,isDeleted);
Ỹ ← MarkerAddition(Y, Ŝn); /* Step 3. */
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Ỹ) do

if isJointlyTypical(X[i][:],Y[j][:],P, pY |X , pS, ϵ) then
σ̂n[i]← j;
count← count + 1;

end
end
/* count = 0: no row in Ỹ jointly typical with X[i][:]. ERROR! */
/* count > 1: multiple rows in Ỹ jointly typical with X[i][:]. ERROR! */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

where Ī(X;Y S, S) is the mutual information rate [54] defined as

Ī(X;Y S, S) ≜ lim
n→∞

1

n
I(Xn;Y Kn , Sn) (43)

Note that since mn is exponential in n, from Lemma 2 we have ρn → 0. Furthermore, since

Λn = Θ(log n), from Lemma 3 we have µn → 0 as n→∞. Thus Pe ≤ ϵ as n→∞ if

R < lim
n→∞

1

n
I(Xn;Y Kn , Sn) (44)

concluding the proof of the achievability part.

D. Converse

In this subsection, we prove that the database growth rate achieved in Theorem 1 is in fact

tight using a genie-aided proof where the column repetition pattern Sn is known. Since the

rows are i.i.d. conditioned on the repetition pattern Sn, the seeds (G(1),G(2)) do not offer any

additional information when Sn is given. Thus, the genie-aided proof holds for any seed size

Λn.
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Proof of Converse of Theorem 1. While Theorem 1 is stated for Λn = Ω(log logmn), in the

converse we assume any seed size Λn. We prove the converse using the modified Fano’s inequality

presented in [34]. Let R be the database growth rate and Pe be the probability that the scheme

is unsuccessful for a uniformly selected row pair. More formally,

Pe ≜ Pr (σn(J) ̸= σ̂n(J)) , J ∼ Unif([mn]) (45)

Suppose Pe → 0 as n → ∞. Furthermore, let Sn be the repetition pattern and Kn =
∑n

j=1 Sj .

Since σn is a uniform permutation, from Fano’s inequality, we have

H(σn) ≤ 1 +mnPe logmn + I(σn;X,Y,G
(1),G(2), Sn) (46)

From the independence of Y, Sn, (G(1),G(2)) and σn, we get

I(σn;X,Y,G
(1),G(2), Sn) = I(σn;X|Y,G(1),G(2), Sn) (47)

≤ I(σn,Y,G
(1),G(2), Sn;X) (48)

≤ I(σn,Y, S
n;X) (49)

= I(σn,Y;X|Sn) (50)

=
mn∑
i=1

I(Xn
i ;Y

Kn

σn(i)
|Sn) (51)

= mnI(X
n;Y Kn|Sn) (52)

= mnI(X
n;Y Kn , Sn) (53)

where (49) follows from the fact that given the repetition pattern Sn, the seeds (G(1),G(2)) do not

offer any additional information on σn. Equation (51) follows from the conditional independence

of the non-matching rows given Sn. Equation (52) follows from the fact that the matching rows

are identically distributed conditioned on the repetition pattern Sn. Finally, (53) follows from

the independence of Xn and Sn.

Note that from Stirling’s approximation [50, Chapter 3.2] and the uniformity of σn, we get

H(σn) = logmn! (54)

= mn logmn −mn log e+O(logmn) (55)
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lim
n→∞

1

mnn
H(σn) = lim

n→∞

1

mnn
[mn logmn −mn log e+O(logmn)] (56)

= lim
n→∞

1

n
logmn (57)

= R (58)

Finally, from (46)-(58) we obtain

R = lim
n→∞

1

mnn
H(σn) (59)

≤ lim
n→∞

[
1

mnn
+ PeR +

1

n
I(Xn;Y Kn , Sn)

]
(60)

= lim
n→∞

I(Xn;Y Kn , Sn)

n
(61)

where (61) follows from the fact that Pe → 0 as n→∞.

E. Noiseless Setting

Lemmas 2 and 3 state that given a seed size Λn double logarithmic with the row size mn,

the repetition pattern can be inferred through the aforementioned replica and deletion detection

algorithms for any noise distribution pY |X . Thus, the results of Section III-A through Section III-C

trivially apply to the noiseless setting where

pY |X(y|x) = 1[y=x] ∀(x, y) ∈ X2. (62)

We note that when there is no noise, the capacity expression of Theorem 1 (Equation 26) can

be further simplified as

C = (1− δ)2
∞∑
r=0

δrH(X0|X−r−1). (63)

In this subsection, we show that in the noiseless setting, seeds can be made obsolete by the use

of a novel detection algorithm. In other words, in the noiseless setting, we show that Theorem 1

can be extended to any seed size Λn.

Theorem 2. (Noiseless Matching Capacity for Identical Repetition) Consider a probability

transition matrix P and a repetition probability distribution pS . Suppose there is no noise, i.e.,

pY |X(y|x) = 1[y=x] ∀(x, y) ∈ X2. (64)
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Then, the matching capacity under identical repetition is

C = (1− δ)2
∞∑
r=0

δrH(X0|X−r−1) (65)

for any seed size Λn. Here δ ≜ pS(0) is the deletion probability and H(X0|X−r−1) is the

conditional entropy associated with the probability transition matrix

Pr+1 = γr+1I+ (1− γr+1)U (66)

The capacity can further be simplified as

C =
(1− δ)(1− γ)

(1− γδ)
[H(π) +

∑
i∈X

u2i log ui]− (1− δ)2
∞∑
r=0

δr
∑
i∈X

uiηr,i log ηr,i (67)

where

ηr,i ≜ (1− ui)γr+1 + ui. (68)

Corollary 2. (Noiseless Matching Capacity for Identical Repetition with I.I.D. Database

Entries) When γ = 0, resulting in an i.i.d. database distribution pX(x) = ux, ∀x ∈ X, the

matching capacity in the noiseless setting is

C = (1− δ)H(X) (69)

where H(X) = H(π) is the entropy of the stationary distribution π = [u1, . . . , u|X|].

Observe that the RHS of (65) is the mutual information rate for an erasure channel with

erasure probability δ with first-order Markov (P) inputs, as stated in [55, Corollary II.2]. Thus,

Theorem 2 states that we can achieve the erasure bound which assumes prior knowledge of the

column repetition pattern.

The proof of Theorem 2 hinges on the observation that in the noiseless setting deletion and

replica detection can be performed without seeds. Inspired by the idea of extracting permutation-

invariant features as done in Section III-A, our noiseless repetition detection algorithm uses the

histogram (and equivalently the type) of each column of X and Y as the permutation-invariant

feature. Our repetition detection algorithm works as follows: First, for tractability, we “collapse”

the Markov chain into a binary-valued one. We pick a symbol x from the alphabet X, WLOG

x = 1, and define the collapsed databases X̃ and Ỹ as follows:
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M̃i,j =

1 if Mi,j = 1

2 if Mi,j ̸= 1
, ∀(i, j), M ∈ {X,Y} (70)

Next, we construct the collapsed histogram vectors H̃(1),n and H̃(2),Kn as

H̃
(1)
j =

mn∑
i=1

1[X̃i,j=2], ∀j ∈ [n] (71)

H̃
(2)
j =

mn∑
i=1

1[Ỹi,j=2], ∀j ∈ [Kn] (72)

Then, the algorithm declares the j th column deleted if H̃(1)
j is absent in H̃(2),Kn and declares

the j th column replicated s times if H̃(1)
j is present s ≥ 1 times in H̃(2),Kn .

Note that as long as column histograms H̃(1)
j of the collapsed database X̃ are unique, this

detection process is error-free.

The following lemma provides conditions for the asymptotic uniqueness of column histograms

H̃
(1)
j , j ∈ [n].

Lemma 4. (Asymptotic Uniqueness of the Column Histograms) Let H̃(1)
j denote the histogram

of the j th column of X̃, as in (71). Then, for mn = ω(n4), we have

Pr
(
∃i, j ∈ [n], i ̸= j, H̃

(1)
i = H̃

(1)
j

)
→ 0 as n→∞. (73)

Proof. See Appendix C.

When the databases are not collapsed, the order relation given in Lemma 4 can be tightened.

See Section V-C for more details.

Note that by Definition 7, the row size mn is exponential in the column size n and the order

relation of Lemma 4 is automatically satisfied.

Next, we present the proof of the achievability part of Theorem 2 via Algorithm 4.
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Algorithm 4: Typicality-Based Matching Scheme (Identical Repetition, Noiseless Set-
ting)

Input : (X,Y,P, pS, ϵ)
Output: σ̂n
(X̃, Ỹ)← CollapseDatabases(X,Y); /* Eq. (70). */
(H̃(1), H̃(2))← ColumnHistograms(X̃, Ỹ); /* Eq. (71). */
/* Histogram-based repetition detection */
for i = 1 to columnSize(H̃(1)) do

count← 0;
for j = 1 to columnSize(H̃(2)) do

if H̃(2)[:][j] = H̃(1)[:][i] then
count← count + 1;

end
end
Ŝ[i]← count;

end
/* Erasure symbol addition & Extra replica removal */
for j = 1 to columnSize(X) do

if Ŝ[j] = 0 then
Ȳ[:][j]← ∗;

else
Ȳ[:][j]← X[:][j];

end
end
/* Typicality matching w.r.t. erasure channel */
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Y) do

if isJointlyTypical2(X[i][:], Ȳ[j][:],P, pS, ϵ) then
σ̂n[i]← j;
count← count + 1;

end
end
/* count = 0: no row in Ȳ jointly typical with X[i][:]. ERROR! */
/* count > 1: multiple rows in Ȳ jointly typical with X[i][:]. ERROR! */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

Proof of Achievability of Theorem 2. Let Sn be the underlying repetition pattern and Kn ≜∑n
j=1 Sj be the number of columns in Y. Our matching scheme consists of the following steps:

1) Construct the collapsed histogram vectors H̃(1),n and H̃(2),Kn as in (71).

2) Check the uniqueness of the entries H̃(1)
j j ∈ [n] of H̃(1),n. If there are at least two that are
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identical, declare a detection error whose probability is denoted by µn. Otherwise, proceed

with Step 3.

3) If H̃(1)
j is absent in H̃(2),Kn , declare it deleted, assigning Ŝj = 0. Note that, conditioned on

the uniqueness of the column histograms H̃(1)
j ∀j ∈ [n], this step is error-free.

4) If H̃(1)
j is present s ≥ 1 times in H̃(2),Kn , assign Ŝj = s. Again, if there is no detection

error in Step 2, this step is error-free. Note that at the end of this step, provided there are no

detection errors, we recover Sn, i.e., Ŝn = Sn.

5) Based on Ŝn, X and Y, construct Ȳ as the following:

• If Ŝj = 0, the j th column of Ȳ is a column consisting of erasure symbol ∗ /∈ X.

• If Ŝj ≥ 1, the j th column of Ȳ is the j th column of X.

Note that after the removal of the additional replicas and the introduction of the erasure

symbols, Ȳ has n columns.

6) Fix ϵ > 0. Let qȲ |X be the probability transition matrix of an erasure channel with erasure

probability δ, that is ∀(x, ȳ) ∈ X× (X ∪ {∗})

qȲ |X(ȳ|x) =

1− δ if ȳ = x

δ if ȳ = ∗
. (74)

We consider the input to the memoryless erasure channel as the ith row Xn
i of X. The output

Ȳ n is the matching row of Ȳ. For our row matching algorithm, we match the lth row Ȳ n
l of

Ȳ with the ith row Xn
i of X, if Xn

i is the only row of X jointly ϵ-typical [49, Chapter 3]

with Ȳ n
l with respect to pXn,Y n , where

pXn,Ȳ n(xn, ȳn) = pXn(xn)
n∏

j=1

qY |X(ȳj|xj) (75)

where Xn denotes the Markov chain of length n with probability transition matrix P. This

results in σ̂n(i) = l. Otherwise, declare collision error.

Similar to (42), from the union bound and Proposition 3, the total probability of error of this

scheme can be bounded for large n as follows

Pe ≤ µn + ϵ+ 2n(R−Ī(X;Ȳ )+3ϵ) (76)
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Since mn is exponential in n, by Lemma 4, µn → 0 as n→∞. Thus

Pe < 3ϵ as n→∞ (77)

if R < Ī(X; Ȳ )− 3ϵ. Thus, we can argue that any database growth rate R satisfying

R < Ī(X; Ȳ ) (78)

is achievable, by taking ϵ small enough. From [55, Corollary II.2] we have

Ī(X; Ȳ ) = (1− δ)2
∞∑
r=0

δrH(X0|X−r−1) (79)

where H(X0|X−r−1) is the conditional entropy associated with the probability transition matrix

Pr+1.

Now, we argue that (66) can be proven via induction on r by taking (2) as a base case and

observing that U2 = U. Finally, plugging π and Pr+1 directly into [49, Theorem 4.2.4] yields

(67), concluding the achievability part of the proof.

Next, we move on to prove the converse part of Theorem 2.

Proof of Converse of Theorem 2. Since the converse part of Theorem 1 holds for any seed size

Λn, in the noiseless setting, we trivially have

C ≤ lim
n→∞

I(Xn;Y Kn , Sn)

n
. (80)

Next, note that there is a bijective mapping between (Y Kn , Sn) and (Ȳ n, Sn). Therefore, we

have

I(Xn;Y Kn , Sn) = I(Xn; Ȳ n, Sn) (81)

= I(Xn; Ȳ n) + I(Xn;Sn|Ȳ n) (82)

= I(Xn; Ȳ n) (83)

where (83) follows from the independence of Sn and Xn conditioned on Ȳ n. This is because

since Ȳ n is stripped of all extra replicas, from (Xn, Ȳ n) we can only infer the zeros of Sn,

which is already known through Ȳ n via erasure symbols. Thus, we have

C ≤ Ī(X; Ȳ ) (84)
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where Ī(X; Ȳ ) is defined in (79), concluding the proof of the converse part.

The runtimes of the histogram-based detection algorithm and the typicality-based matching

algorithm (Algorithm 4) are O(mnn) and O(m2
nn), respectively.

IV. MATCHING CAPACITY FOR INDEPENDENT REPETITION

In this section, we investigate the upper and the lower bounds on the matching capacity C

for independent repetition, where we assume a repetition pattern that is independent across all

rows. For tractability, we focus on the special case where γ = 0, resulting in an i.i.d. database

distribution pX(x) = ux, ∀x ∈ X.

We state our main result on the matching capacity for independent repetition in the following

theorem:

Theorem 3. (Matching Capacity Bounds for Independent Repetition) Consider a probability

transition matrix P with γ = 0, a noise distribution pY |X and a repetition distribution pS . Then

the matching capacity satisfies

C ≥
[
E[S]
smax

H(X)− (1− αδ)Hb

(
E[S]

(1− αδ)smax

)
− E[S]H(X|Y )

]+
(85)

C ≤ inf
n≥1

1

n
I(Xn;Y Kn , An) (86)

where

Pr(Y Kn = yKn|Xn = xn) =
∏

j:Sj ̸=0

Pr((YKj−1+1, . . . , YKj
) = (yKj−1+1, . . . , yKj

)|Xj = xj) (87)

=
∏

j:Sj ̸=0

Sj∏
s=1

pY |X(yKj−1+s|xj), (88)

Kj ≜
j∑

t=1

St , and δ and α are the deletion and the deletion detection probabilities, respectively

and smax ≜ max supp(pS). Furthermore, for repetition distributions with 1
smax

E[S] ≥ 1−αδ
|X| , the

lower bound in equation (85) can be tightened as

C ≥
[
(1− αδ)H(X)−

(
1− αδ − E[S]

smax

)
min{H(X), log(|X| − 1)}

− (1− αδ)Hb

(
E[S]

(1− αδ)smax

)
− E[S]H(X|Y )

]+
(89)
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We note that the upper bound given in Theorem 3 (equation (86)) is an infimum over the

column size n. Therefore, its evaluation for any n ∈ N yields an upper bound on the matching

capacity.

With independent repetition, we cannot perform repetition detection as in Section III, and hence

we are restricted to using a single-step rowwise matching scheme as done in [34]. This builds

an analogy between database matching and channel decoding. In particular, our approach to

database matching for independent repetition is related to decoding in the noisy synchronization

channel [56].

We stress that there are several important differences between the database matching problem

and the synchronization channel literature: i) In database matching the database distribution is

fixed and cannot be designed or optimized, whereas in channel coding the main goal is to optimize

the input distribution to find the channel capacity ii) The synchronization channel literature mostly

focuses on code design with few works, such as [57], focusing on random codebook arguments

for only a few types of synchronization errors such as deletion [57] and duplication [58] and

finally iii) Our database matching result provides an achievability argument for all repetition

distributions with finite support, whereas the synchronization channel literature mainly focuses on

some families of repetition distributions. As a result, for input-constrained noisy synchronization

channels, our generalized random codebook argument, presented in Section IV-A, is novel and

might be of independent interest.

In Section IV-A, we prove the achievability part of Theorem 3 (equation (85)) by proposing

a rowwise matching scheme. Then, in Section IV-B we prove the converse part (equation (86)).

Then, we present strictly tighter upper bounds for a special case with only deletions, i.e., when

smax = 1.

A. Row Matching Scheme and Achievability

To prove the achievability, we consider the following matching scheme, also given in Algo-

rithm 5:

1) Given the ith row Y Kn
i of Y and the corresponding row An

i of the partial deletion location

information A, we discard the j th column of X if Ai,j = 1, ∀j ∈ [n] to obtain X̄ since it does

not offer any additional information due to the independent nature of the database entries.
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Algorithm 5: Typicality-Based Matching Scheme (Independent Repetition)
Input : (X,Y,A, pX , pY |X , pS, ϵ)
Output: σ̂n
for j = 1 to rowSize(Y) do

count← 0;
/* Remove revealed deleted columns */
for i = 1 to columnSize(A) do

if A[j][i] = 0 then
X̄[:][i]← X[:][i];

else
X̄[:][i]← [];

end
end
/* Stretch X̄ smax times */
for i = 1 to columnSize(X̄) do

X̃[:][(i− 1)smax + 1 : ismax]← X̄[:][i];
end
/* Typical subsequence check (See Appendix D). */
for i = 1 to rowSize(X̃) do

if isTypicalSubsequence(X̃[i][:],Y[j][:],P, pY |X , pS, ϵ) then
σ̂−1
n [j]← i;

count← count + 1;
end

end
/* count = 0: Y[j][:] is not a typical subsequence of any X̃[i][:]. ERROR! */
/* count > 1: Y[j][:] is a typical subsequence of multiple X̃[i][:]. ERROR! */
if count ̸= 1 then

σ̂−1
n [j]← 0; /* Matching error. */

end
end

2) We convert the problem into a deletion-only one by elementwise repeating all the columns

of X̄ smax times, which we call “stretching by smax”, to obtain X̃. At this step, Y Kn
i can be

seen as the output of the noisy deletion channel where the σ−1
n (i)th row of X̃ is the input.

3) We perform a generalized version of the decoding algorithm introduced in [36] for the

noiseless deletions with deletion detection probability. Note that the latter itself is an extension

of the one proposed in [57].

Observe that Algorithm 5 has a runtime of O(m2
nn), similar to Algorithms 3-4.

The full proof of the achievability part (equations (85) and (89)) via the matching scheme

described above can be found in Appendix D.
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Xn = [X1X2X3 . . . Xn−1Xn]

Column DiscardingAn = [010 . . . 01]

X̄n−|An| = [X1X3 . . . Xn−1]

Stretching

X̃(n−|An|)smax = [X1. . .X1X3. . .X3. . .Xn−1. . .Xn−1]

smax smax smax

Fig. 4. An illustrative example of the column discarding and the stretching of Xn into X̃(n−|An|)smax , for a given the deletion
detection pattern An. First, we discard each know deleted element known from Xn to obtain X̄n−|An|. Then, each element of
X̄(n−|An|) is repeated smax times to obtain X̃(n−|An|)smax .

An illustrative example of the “stretching” is given in Figure 4. The idea behind this stretching

is that since each entry can be repeated at most smax times when we stretch Xn smax times to

obtain X̃nsmax , the output of the synchronization channel (before the noise pY |X) is guaranteed

to be a subsequence of X̃nsmax . This way, we can convert the general noisy synchronization

problem into a noisy deletion-only problem. We note that when smax becomes large compared

to the alphabet size |X|, the lower bound given in (85) goes to zero, even when pS(smax) is very

small.

Note that for any repetition structure, including the ones not considered in this work, one

can simply ignore the underlying structure and apply the matching scheme described above.

Therefore the achievable rate of Theorem 3 (equation (85)) is achievable for any repetition

structure.

B. Converse

In this subsection, we prove the converse part of Theorem 3 and evaluate the given upper

bound for some special cases. First, we observe that by following the genie argument provided

in the converse of Theorem 1, we can argue that Theorem 1 is an upper bound on C for any α

and for any repetition structure.

We next prove the converse of Theorem 3 (equation (86)). We then analytically evaluate this

for some n ∈ N and we argue that the evaluated upper bounds are strictly tighter than that in
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Theorem 1.

Proof of Converse of Theorem 3. We start with the modified Fano’s inequality used in Sec-

tion III-D. Let

Pe ≜ Pr (σn(J) ̸= σ̂n(J)) , J ∼ Unif([mn]) (90)

Then, we have

H(σn) ≤ 1 +mnPe logmn + I(σn;X,Y,A) (91)

where

I(σn;X,Y,A) = I(σn;X|Y,A) (92)

≤ I(σn,Y,A;X) (93)

=
mn∑
i=1

I(Xn
i ;Y

Kn

σn(i)
, An

σn(i)) (94)

= mnI(X
n;Y Kn , An) (95)

where (94) and (95) follow from the fact that non-matching rows and their corresponding

probabilistic side information on deletion locations are respectively independent and identically

distributed. Following similar steps to Section III-D, we obtain

R ≤ lim
n→∞

I(Xn;Y Kn , An)

n
(96)

whenever Pe → 0 as n→∞.

Note that from Fekete’s lemma [59], for any subadditive sequence {an}n∈N, we have

lim
n→∞

an
n

= inf
n≥1

an
n

(97)

Therefore, it is sufficient to prove the subadditivity of I(Xn;Y Kn , An).

Choose an arbitrary r ∈ [n − 1] and let Mr ≜
∑r

j=1 Sj where Sn is the repetition pattern

through which Y Kn is obtained from Xn. Note that Mr denotes a marker, stating which part

of Y Kn depends on the first r elements of Xn, denoted by Xr
1 . Therefore we have a bijective

relation between (Y Kn ,Mr) and (Y
∑r

j=1 Sj

1 , Y Kn∑r
j=1 Sj+1) where the subscripts and the superscripts
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denote the starting and the ending points of the vectors, respectively. Thus,

I(Xn;Y Kn , An) ≤ I(Xn;Y Kn ,Mr, A
n) (98)

= I(Xn;Y
∑r

j=1 Sj

1 , Y Kn∑r
j=1 Sj+1, A

n) (99)

= I(Xr
1 , X

n
r+1;Y

∑r
j=1 Sj

1 , Y Kn∑r
j=1 Sj+1, A

r
1, A

n
r+1) (100)

= I(Xr
1 ;Y

∑r
j=1 Sj

1 , Ar
1) + I(Xn

r+1;Y
Kn∑r

j=1 Sj+1, A
n
r+1) (101)

where (101) follows from the fact that Xn and An have i.i.d. entries and the noise pY |X acts

independently on the entries. Thus, I(Xn;Y Kn , An) is a subadditive sequence. Hence,

R ≤ inf
n≥1

I(Xn;Y Kn , An)

n
(102)

whenever Pe → 0 as n→∞, concluding the proof.

We note that since the upper bound given in Theorem 3 is the infimum over all n ≥ 1, its

evaluation at any n ∈ N yields an upper bound on the matching capacity. In Corollaries 3 and

4, we analytically evaluate this upper bound at n = 2 under some assumptions on pX,Y when

smax = 1, i.e., when we only have deletions, and explicitly demonstrate the gap between the

upper bounds given in Theorem 1 and Theorem 3.

First, we consider a noiseless deletion setting with arbitrary database distribution pX in

Corollary 3.

Corollary 3. (Upper Bound for Noiseless Deletion) Consider a noiseless deletion setting where

pY |X(y|x) = 1[x=y], ∀(x, y) ∈ X2 and S ∼ Bernoulli(1− δ). Then for any input distribution pX ,

we have

C ≤ 1

2
I(X2;Y K , A2) (103)

= (1− δ)H(X)− (1− α)δ(1− δ) (1− q̂) (104)

where q̂ ≜
∑

x∈X pX(x)
2.

Proof. See Appendix E.

Note that for any X with |X| ≥ 2 and α ∈ [0, 1) the upper bound given in Corollary 3 is
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Fig. 5. The evaluation of the lower and upper bounds on the matching capacity for the binary noisy deletion case with
pX ∼Bernoulli(1/2), pS ∼ Bernoulli(1− δ), α = 0.7 and pY |X ∼ BSC(0.05). The dash-dotted (blue) curve is the achievable
rate stated in Theorem 3. The dashed (yellow) and the dotted (red) curves are the evaluations of the upper bound stated in
Theorem 3, at n = 10 and n = 2, respectively. The solid (purple) curve shows the loose upper bound given in Theorem 1. We
see that the gap between the lower and the upper bounds shrinks as n increases.

strictly lower than the one provided in Theorem 1 which is

I(X;Y, S) = (1− δ)H(X). (105)

Next, we consider a noisy deletion setting with binary X and arbitrary noise pY |X in Corol-

lary 4.

Corollary 4. (Upper Bound for Binary Noisy Deletion) Consider a binary noisy deletion setting

where X ∼ Bernoulli(p) and S ∼ Bernoulli(1− δ). Then, for any binary DMC pY |X , we have

C ≤ 1

2
I(X2;Y K , A2) (106)

= (1− δ)I(X;Y )− 2(1− α)δ(1− δ)p(1− p)I(U ;V ) (107)

where U and V are binary random variables with U ∼ Bernoulli(1/2) and pV |U = pY |X .

Proof. See Appendix F.

Again, for any p ∈ (0, 1) and α ∈ [0, 1), the upper bound given in Corollary 4 is strictly lower
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than the one provided in Theorem 1 which is

I(X;Y, S) = (1− δ)I(X;Y ) (108)

We note that the tighter upper bounds in Corollaries 3 and 4 become generalizations of the

upper bound on the noiseless deletion channel mutual information, given in [60, Corollary 1].

Specifically, [60] considers noiseless deletion channel with i.i.d. Bernoulli inputs. Corollary 3

extends the results to noiseless deletion channels with arbitrary alphabet sizes. Furthermore,

Corollary 4 extends the results to binary noisy deletion channels with arbitrary noise.

For the binary noisy case considered in Corollary 4, the numerical comparison of the lower

bound and the two upper bounds on the matching capacity is provided in Figure 5. Note that

the upper bound provided by Corollary 4 is not tight as it can be shown that a larger value of

n gives a tighter upper bound, implying that the gap between the lower and the upper bounds

in Theorem 3 is smaller than the one shown in Figure 5.

V. EXTENSIONS

In this section, we discuss extensions to the system model and results. Specifically, in Sec-

tion V-A, we investigate the adversarial repetition case instead of random repetitions, where the

repetitions are not due to random sampling of the time-indexed data, but due to a constrained

privacy mechanism. In Section V-B, we consider the identical repetition model with no seeds.

In Section V-C, we discuss the zero-rate regime, where the row size mn is not necessarily

exponential in the column size n, and derive conditions necessary for the detection algorithms

discussed in Section III to work.

A. What If Repetitions Are Intentional?

So far, as stated in Definition 2, we have assumed that the identical repetitions occur randomly

according to a discrete probability distribution pS with finite integer support. In this subsection,

we study the case of an adversary who controls the repetition pattern (under some constraints) to

make matching as difficult as possible. This could arise for example where a privacy-preserving

mechanism denies the sampling of the geolocation data when that data contains the most

information about the users, such as their home addresses. We consider the adversarial setting

under identical repetition assumption.
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We stress that in the identical repetition setting, the replicas either have no effect on the

matching capacity as in the noiseless case (Theorem 2) or offer additional information acting

as a repetition code of random length, in turn increasing the matching capacity (Theorem 1).

Hence, it is expected that any adversary who tries to hinder the matching process to not allow

the replication of entries. Therefore in the adversarial repetition setting, it is natural to focus on

the deletion-only case. We assume an adversary with a δ-deletion budget, which can delete up

to δ fraction of the columns, to maximize the mismatch probability. For tractability, we focus

on the noiseless case with i.i.d. database entries. More formally, we assume Xi
iid∼ pX where

pY |X(y|x) = 1[y=x], ∀(x, y) ∈ X2 (109)

Under these assumptions, we define the adversarial matching capacity as follows:

Definition 13. (Adversarial Matching Capacity) The adversarial matching capacity Cadv(δ)

is the supremum of the set of all achievable rates corresponding to a database distribution pX

and an adversary with a δ-deletion budget when there is identical repetition. More formally,

Cadv(δ) ≜ sup{R : ∀Idel = (i1, . . . , inδ) ⊆ [n],Pr(σ̂n(J) ̸= σn(J))
n→∞−→ 0, J ∼ Unif([mn]))}

(110)

where the dependence of the matching scheme σ̂n on the database growth rate R and the column

deletion index set Idel is omitted for brevity.

Note that in this setting, although the deletions are not random, the matching error is still

a random variable due to the random natures of X and σn. In the proof of Theorem 4 below

(Appendix G), we argue that in the adversarial setting, we can still convert deletions into erasures

via the histogram-based repetition detection algorithm of Section III-E. After the detection part,

we use the following matching scheme: We first remove deleted columns from X, and then

perform exact sequence matching, as described in Algorithm 6 which has O(m2
nn) runtime,

similar to Algorithms 3-5.

We state our main result on the adversarial matching capacity in the following theorem:

Theorem 4. (Adversarial Matching Capacity) Consider a database distribution pX and an

adversary with a δ-deletion budget when there is identical repetition. Then the adversarial
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Algorithm 6: Exact Sequence Matching Scheme Under Adversarial Deletions
Input : (X,Y)
Output: σ̂n
(X̃, Ỹ)← CollapseDatabases(X,Y); /* Eq. (70). */
(H̃(1), H̃(2))← ColumnHistograms(X̃, Ỹ); /* Eq. (71). */
/* Histogram-based repetition detection */
for i = 1 to columnSize(H̃(1)) do

count← 0;
for j = 1 to columnSize(H̃(2)) do

if H̃(2)[:][j] = H̃(1)[:][i] then
count← count + 1;

end
end
Ŝ[i]← count;

end
/* Discard deleted columns */
for j = 1 to columnSize(X) do

if Ŝ[j] = 0 then
X̂[:][j]← [];

else
X̂[:][j]← X[:][j];

end
end
/* Exact sequence matching (See Appendix G.) */
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Y) do

if Y[j][:] = X̂[i][:] then
σ̂n[i]← j;
count← count + 1;

end
end
/* count > 1: Collision Error. */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

matching capacity is

Cadv(δ) =

D(δ∥1− q̂), if δ ≤ 1− q̂

0, if δ > 1− q̂
(111)
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Fig. 6. Matching capacities C vs. deletion probability/budget (δ) when X ∼ Unif(X), X = [5]. Notice that in this case q̂ = 0.2
and for δ > 1− q̂ = 0.8 the adversarial matching capacity Cadv(δ) is zero, while the matching capacity with random deletions
C is positive.

where q̂ ≜
∑

x∈X pX(x)
2.

Proof. See Appendix G.

The matching capacities for random and adversarial deletions as a function of the deletion

probability/budget are illustrated in Figure 6. Note that for δ > 1 − q̂, we have Cadv(δ) = 0

whereas C = (1− δ)H(X) > 0. Furthermore, when δ ≤ 1 − q̂ the matching capacity is

significantly reduced when the column deletions are intentional rather than random.

B. What If There Were No Seeds?

In Section III, we assumed the availability of seeds with a seed size Λn = Ω(log logmn).

Now, we focus on the identical repetition scenario with no seeds.

Note that the replica detection algorithm of Section III-A does not require any seeds. Therefore

in the seedless scenario, we can still detect the replicas with a vanishing probability of error.

On the other hand, in the general noisy setting, the deletion detection algorithm of Section III-B

necessitates seeds. Therefore, in the case of no seeds, we cannot perform deletion detection and

we need to modify the matching scheme of Section III-C to obtain lower bounds on the matching

capacity Cseedless.
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Algorithm 7: Seedless Matching Scheme (Identical Repetition)
Input : (X,Y, pX , pY |X , pS, ϵ)
Output: σ̂n
isReplica← Algorithm 1(Y, pX , pY |X);
Ỹ ← MarkerAddition(Y,isReplica);
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Y) do

/* Typical subsequence check (See Appendix H.) */
if TypicalSubsequenceCheck(X[i][:], Ỹ[j][:], pX , pY |X , pS, ϵ) then

σ̂n[i]← j;
count← count + 1;

end
end
/* count = 0: Ỹ[j][:] is not jointly typical with any subsequence of any row of X. */
/* count > 1: Ỹ[j][:] is jointly typical with a subsequence of multiple rows of X. */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

For tractability, we focus on the case with i.i.d. database entries, i.e., γ = 0. More formally,

we assume Xi
iid∼ pX . Under this assumption, we state a lower bound on the unseeded matching

capacity with identical repetition in the following theorem via Algorithm 7 which has O(m2
nn)

runtime, similar to Algorithms 3-6.

Theorem 5. (Seedless Matching Capacity with Identical Repetition) Consider a database

distribution pX , a noise distribution pY |X , a repetition distribution pS and an identical repetition

pattern. Then, in the seedless case, the matching capacity Cseedless satisfies

Cseedless ≥
[
I(X;Y S, S)−Hb(δ)

]+
(112)

Cseedless ≤ I(X;Y S, S) (113)

where δ ≜ pS(0) is the deletion probability, S ∼ pS and Y S has the following distribution

conditioned on X such that

Pr(Y S = yS|X = x) =


S∏

j=1

pY |X(yj|x) if S > 0

1[ys=E] if S = 0

(114)
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where E denotes the empty string.

Furthermore, for repetition distributions with δ ≤ 1− 1/|X|, the lower bound can be tightened

as

Cseedless ≥
[
I(X;Y S, S) + δ[H(X)− log(|X| − 1)]+ −Hb(δ)

]+
(115)

Proof. See Appendix H.

We note that although the converse results of Theorems 1 and 5 match, the achievable rates

differ by Hb(δ). In other words, Theorem 5 implies that the gap between the lower and the

upper bounds on the seedless matching capacity is at most Hb(δ). We note that this gap is

due to our inability to detect deletions in the achievability part. Hence, we conjecture that the

lower bound in Theorem 5 is loose while the converse is tight. This is because in the noiseless

setting, as discussed in Section III-E, deletion detection can be performed without seeds and the

achievability bound is indeed improved and tight.

C. Zero-Rate Regime

In Section III, we considered at the matching capacity C for Λn = Ω(log logmn) when the

database growth rate R is positive. In other words, so far, we have assumed

lim
n→∞

1

n
logmn > 0 (116)

The detection algorithms we presented in Sections III-A through III-E depended on the row

size mn being large compared to the column size n. In this section, we further investigate these

algorithms to derive the sufficient and/or necessary conditions on the relation between mn and

n in order for them to work in the zero-rate regime where

lim
n→∞

1

n
logmn = 0. (117)

Since R = 0, we define the non-asymptotic database growth rate Rn as

Rn ≜
1

n
logmn. (118)

Here, R = 0 trivially implies Rn → 0 as n→∞. Below we investigate the sufficient conditions

on Rn such that the results of Sections III and IV hold.
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1) Noisy Replica Detection: We consider the replica detection algorithm discussed in Sec-

tion III-A. Note that the RHS of equation (162) of Appendix A has 2K − 2 ≤ 2nsmax = O(n)

additive terms, each decaying exponentially in mn. Thus, for a given average Hamming distance

threshold τ ∈ (p1, p0) which is chosen based based on P and pY |X and in turn constant with

respect to n

mn ≥
log(nsmax)

min{D(τ∥p0), D(1− τ∥1− p1)}
= Θ(log n) (119)

is enough to ensure a vanishing replica detection error probability. In other words, as long as

mn = Ω(log n) and in turn

Rn = Ω

(
log log n

n

)
(120)

our replica detection algorithm works.

2) Seeded Deletion Detection: We study the seeded deletion detection algorithm discussed in

Section III-B. Note that we only run the deletion detection algorithm on the seeds (G(1),G(2))

and not on the database pair (X,Y) directly, the relationship between mn and n does not affect

the success of the deletion detection. Thus, as long as the seed size Λn = Ω(log n) our deletion

detection algorithm works for any database growth rate, including the zero-rate regime. This in

turn implies that mn ≥ Λn = Ω(log n) and

Rn = Ω

(
log log n

n

)
. (121)

3) Noiseless Joint Deletion-Replication Detection: We investigate the histogram-based joint

deletion-replication detection algorithm introduced in Section III-E for the noiseless scenario.

By Lemma 4, mn = ω(n4) is sufficient. Thus, as long as logmn ≥ 4 log n, the histogram-based

detection can be performed with a performance guarantee. In turn, for any

Rn = Ω

(
log n

n

)
(122)

the histogram-based detection algorithm has a vanishing probability of error.

Therefore, in the noiseless setting, database growth rate Rn = Ω(logn/n) provides enough

granularity on the column histograms and we can perform detection with a decaying probability

of error which then leads to asymptotically-zero mismatch probability.

Note that, for tractability, so far we have collapsed the databases into binary-valued ones.
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Further, in Lemma 4, we showed that for the collapsed databases mn = ω(n4) is enough for

the asymptotic uniqueness of the column histograms. We now tighten this order relation for the

special case where γ = 0 results in an i.i.d. database distribution Xi,j
i.i.d.∼ pX with support X.

Lemma 5. (Asymptotic Uniqueness of the Uncollapsed Histograms) Consider an i.i.d. database

distribution pX . Let H(1)
j denote the histogram of the j th column of X. Then,

Pr
(
∃i, j ∈ [n], i ̸= j,H

(1)
i = H

(1)
j

)
→ 0 as n→∞ (123)

if mn = ω(n
4

|X|−1 ).

Proof. See Appendix I.

Note that in the binary setting the results of Lemmas 4 and 5 agree.

Lemma 5 implies that we only need a row size mn polynomial in n to guarantee enough

granularity for the uniqueness of H(1)
i and that the degree of the polynomial scales inversely

with the alphabet size |X|. Furthermore, to demonstrate the tightness of this requirement of

having mn = ω(n
4

|X|−1 ), we consider the special case where pX is uniform over X. This leads

to the following proposition:

Proposition 4. Let H(1)
j denote the histogram of the j th column of X. If pX(x) = 1

|X| , ∀x ∈ X,

then

Pr
(
∃i, j ∈ [n], i ̸= j,H

(1)
i = H

(1)
j

)
= n2m

1−|X|
2

n C|X|(1 + on(1)) (124)

where C|X| = (4π)
1−|X|

2 |X|
|X|
2 .

Proof. See Appendix J.

Proposition 4 states that in the setting with i.i.d. uniform database distribution, for the asymp-

totic uniqueness of the column histograms mn = ω(n
4

|X|−1 ) is not only sufficient but also

necessary.

4) Independent Repetition Row Matching Scheme: In the independent repetition scenario, we

have no detection algorithms which depend on the large-mn assumption. Therefore, so long

as the RHS of (85) is positive, any Rn = on(1) is achievable. We stress that this observation

trivially applies to the identical repetition case as well since one can simply ignore any underlying

structure and perform the matching scheme given in Section IV-A.
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VI. CONCLUSION

In this work, we have presented a unified information-theoretic foundation for database match-

ing under noise and synchronization errors. We have showed that when the repetition pattern is

constant across rows, the running Hamming distances between the consecutive columns of the

correlated repeated database can be used to detect replicas. In addition, given seeds whose size

grows double-logarithmic with the number of rows, a Hamming distance-based threshold testing,

after an adequate remapping of database entries, can be used to infer the locations of the deletions.

Using the proposed detection algorithms, and a joint typicality-based rowwise matching scheme,

we have derived an achievable database growth rate, which we prove is tight. Therefore, we

have completely characterized the database matching capacity under noisy column repetitions.

Furthermore, we have derived achievable database growth rates proposing a typicality-based

matching scheme and a converse result for the setting where the repetition takes place entrywise,

where we build analogy between database matching and synchronization channel decoding. We

have also discussed some extensions, such as the adversarial column deletion setting rather then

the random one.

Other natural extensions beyond those studied in this paper include the finite column size

regime, where tools from finite-blocklength information theory could be useful, and practical

algorithms with theoretical guarantees. An extensive analysis of the parallels between database

matching under synchronization errors and two-dimensional synchronization channels [61], [62]

and the construction of codes tailored to correct the error patterns investigated in this paper

could be an interesting line of future work. Finally, one can extend our adversarial setting into a

noisy one where the privacy-preserving mechanism not only deletes columns but also introduces

intentional noise on the microdata, and investigate the adversarial matching capacity through a

worst-case analysis.
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APPENDIX A

PROOF OF LEMMA 2

Observe that since the rows of Y are i.i.d. conditioned on the column repetition pattern Sn,

the Hamming distance Hj between consecutive columns Cmn
j and Cmn

j+1 follows a Binomial

distribution whose success parameter depends on whether Cmn
j and Cmn

j+1 are noisy replicas or

not. More formally, if Cmn
j and Cmn

j+1 being noisy replicas, then there exist an i ∈ [mn] such that

Pr(Yt,j, Yt,j+1 = y1, y2|Xσ−1
n (t),i = x) = pY |X(y1|x)pY |X(y2|x), ∀t ∈ [mn] (125)

More specifically, let Cmn
j and Cmn

j+1 correspond to the j1
st and j2

nd columns of X and let

r ≜ j2−j1−1 denote the number of deleted columns between Cmn
j and Cmn

j+1. Note that r = −1

denotes the case when Cmn
j and Cmn

j+1 are noisy replicas. Then we have Hj ∼ Binom(mn, p1)

if Cmn
j and Cmn

j+1 are noisy replicas and Hj ∼ Binom(mn, p
(r)
0 ) otherwise. Thus, proving that

p
(r)
0 and p1 are bounded away from one another for any r ≥ 0 will allow us to use the running

Hamming distance based threshold test discussed in Section III-A.

Our goal is to prove that p(r)0 > p1 for any r ≥ 0. First, we can formally rewrite p0 as

p
(r)
0 =

∑
x1∈X

∑
x2∈X

∑
y∈X

Pr(X1,j1 = x1) Pr(X1,j2 = x2|X1,j1 = x1)

Pr(Yσn(1),j = y|Xj1 = x1) Pr(Yσn(1),j+1 ̸= y|X1,j2 = x2) (126)

=
∑
x1∈X

∑
x2∈X

∑
y∈X

ux1 Pr(X1,j2 = x2|X1,j1 = x1)pY |X(y|x1)[1− pY |X(y|x2)] (127)

=

|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui (P
r)i,j pY |X(k|i) [1− pY |X(k|j)] (128)

=

|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui [(1− γr)uj + γrδij] pY |X(k|i) [1− pY |X(k|j)] (129)

=

|X|∑
i=1

|X|∑
k=1

ui [(1− γr)ui + γr] pY |X(k|i) [1− pY |X(k|i)]

+

|X|∑
i=1

∑
j ̸=i

|X|∑
k=1

ui [(1− γ)uj] pY |X(k|i) [1− pY |X(k|j)] (130)

= (1− γr)
|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui uj pY |X(k|i) [1− pY |X(k|j)]
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+ γr
|X|∑
i=1

|X|∑
k=1

ui pY |X(k|i) [1− pY |X(k|i)] (131)

= (1− γr)p′0 + γrp′1 (132)

where

p′0 ≜
|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui uj pY |X(k|i) [1− pY |X(k|j)] (133)

p′1 ≜
|X|∑
i=1

|X|∑
k=1

ui pY |X(k|i) [1− pY |X(k|i)] (134)

Similarly, we rewrite p1 as

p1 =
∑
x∈X

∑
y∈X

Pr(X1,j1 = x) Pr(Yσn(1),j = y|X1,j1 = x) Pr(Yσn(1),j+1 ̸= y|X1,j1 = x) (135)

=

|X|∑
i=1

|X|∑
k=1

ui pY |X(k|i) [1− pY |X(k|i)] (136)

= p′1 (137)

Thus, for any γ ∈ [0, 1) and r ≥ 0, we have

p
(r)
0 > p1 ⇐⇒ p′0 > p′1 (138)

Note that p′0 and p′1 would correspond to

p′0 = Pr(Yσn(1),j ̸= Yσn(1),j+1|r ≥ 0) (139)

p′1 = Pr(Yσn(1),j ̸= Yσn(1),j+1|r = −1) (140)

if the entries Xi,j of X were drawn i.i.d. from the stationary distribution π of P, instead of

a Markov process. Thus, to consider the i.i.d. database entries case, we introduce the discrete

random variable W with

pW (i) = ui, ∀i ∈ X (141)

pY |W (y|w) = pY |X(y|w), ∀(w, y) ∈ X2 (142)

We note that this equivalence induced by (138) is due to the specific Markov structure we
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adopted in Definition 1.

Let pY (y) ≜
∑
w∈X

pW,Y (w, y) ∀y ∈ X. Then, we can rewrite p′0 and p′1 as

p′0 =
∑
w1∈X

∑
w2∈X

∑
y∈X

pW (w1)pW (w2)pY |W (y|w1)
[
1− pY |W (y|w2)

]
(143)

=
∑
w1∈X

∑
y∈X

pW (w1)pY |W (y|w1)
∑
w2∈X

pW (w2)
[
1− pY |W (y|w2)

]
(144)

=
∑
w∈X

∑
y∈X

pW (w)pY |W (y|w) [1− pY (y)] (145)

p′1 =
∑
w∈X

∑
y∈X

pW (w)pY |W (y|w)
[
1− pY |W (y|w)

]
(146)

Thus, we have

p′0 − p′1 =
∑
w∈X

∑
y∈X

pW,Y (w, y)
[
pY |W (y|w)− pY (y)

]
. (147)

For every y ∈ X, let

ψ(y) ≜
∑
w∈X

pW (w)
[
pY |W (y|w)− pY (y)

]2 (148)

=
∑
w∈X

pW (w)

[
pY |W (y|w)−

∑
z∈X

pY |W (y|z)pW (z)

]2
(149)

≥ 0 (150)

where (150) follows from the non-negativity of the square term in the summation. It must be

noted that ψ(y) = 0 only if pY |W (y|w) = pY (y), ∀w ∈ X with pW (w) = uw > 0.

Expanding the square term, we obtain

ψ(y) =
∑
w∈X

pW (w)pY |W (y|w)2 − 2pY (y)
∑
w∈X

pW (w)pY |W (y|w) +
∑
w∈X

pW (w)pY (y)
2 (151)

=
∑
w∈X

pW (w)pY |W (y|w)2 − 2pY (y)
2 + pY (y)

2 (152)

=
∑
w∈X

pW (w)pY |W (y|w)2 − pY (y)2 (153)

October 25, 2023 DRAFT



50

Next, we rewrite p′0 − p′1 as

p′0 − p′1 =
∑
y∈X

∑
w∈X

pW,Y (w, y)
[
pY |W (y|w)− pY (y)

]
(154)

=
∑
y∈X

[(∑
w∈X

pW (w)pY |W (y|w)2
)
− pY (y)2

]
(155)

=
∑
y∈X

ψ(y) (156)

≥ 0 (157)

with p′0 − p′1 = 0 only when pY |W (y|w) = pY (y), ∀(w, y) ∈ X2. In other words, p′0 > p′1 and in

turn p(r)0 > p1 as long as the two databases are not independent.

We next choose any τ ∈ (p1, p
(0)
0 ) bounded away from both p

(0)
0 and p1. Let Aj denote the

event that Cmn
j and Cmn

j+1 are noisy replicas and Bj denote the event that the algorithm declares

Cmn
j and Cmn

j+1 as replicas. Via the union bound, we can upper bound the total probability of

replica detection error as

Pr(
Kn−1⋃
j=1

Fj) ≤
Kn−1∑
j=1

Pr(Ac
j) Pr(Bj|Ac

j) + Pr(Aj) Pr(B
c
j |Aj) (158)

Note that conditioned on Ac
j , we have Hj ∼ Binom(mn, p

(r)
0 ) and conditioned on Aj , we have

Hj ∼ Binom(mn, p1). Then, from the Chernoff bound [63, Lemma 4.7.2], we get

Pr(Bj|Ac
j) ≤ 2−mnD(τ∥p(r)0 ) (159)

≤ 2−mnD(τ∥p(0)0 ) (160)

Pr(Bc
j |Aj) ≤ 2−mnD(1−τ∥1−p1) (161)

where (160) follows from the fact that D(τ∥p) is an increasing function of p for p > τ .

Thus, we get

Pr(
Kn−1⋃
j=1

Fj) ≤ (Kn − 1)
[
2−mnD(τ∥p(0)0 ) + 2−mnD(1−τ∥1−p1)

]
(162)

Observe that since the RHS of (162) has 2Kn = O(n) terms decaying exponentially in mn,
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for any mn = ω(log n) we have

Pr(
Kn−1⋃
j=1

Fj)→ 0 as n→∞. (163)

Finally observing that n ∼ logmn concludes the proof.

APPENDIX B

PROOF OF LEMMA 3

Let (X̃i,j, Ỹi,j) be a pair of matching entries. Since the database distribution is stationary,

WLOG, we can assume (i, j) = (1, 1). Now, given (X̃1,1, Ỹ1,1), and the non-matching pair

(X̃1,j, Ỹ1,1) with j− 1 = r ̸= 0, we first prove the existence of such a bijective mapping Φ such

that for any r ∈ [n− 1]

Pr(Φ(Ỹ1,1) ̸= X̃1,1) < Pr(Φ(Ỹ1,1) ̸= X̃1,r+1). (164)

For given Φ and r ∈ [n− 1] let

q
(r)
0,Φ ≜ Pr(Φ(Ỹ1,1) ̸= X̃1,r+1) (165)

q1,Φ ≜ Pr(Φ(Ỹ1,1) ̸= X̃1,1) (166)

Here, our goal is to show that there exists at least one Φ satisfying

q
(r)
0,Φ > q1,Φ, ∀r ∈ [n− 1]. (167)

We can rewrite q(r)0,Φ as

q
(r)
0,Φ =

∑
x1∈X

∑
x2∈X

Pr(X̃1,1 = x1) Pr(X̃1,r+1 = x2|X̃1,1 = x1) Pr(Φ(Ỹ1,1) ̸= x2|X̃1,1 = x1) (168)

=

|X|∑
i=1

|X|∑
j=1

ui (P
r)i,j [1− pY |X(Φ

−1(j)|i)] (169)

=

|X|∑
i=1

|X|∑
j=1

ui [(1− γr)uj + γrδij] [1− pY |X(Φ
−1(j)|i)] (170)

= (1− γr)
|X|∑
i=1

|X|∑
j=1

ui uj [1− pY |X(Φ
−1(j)|i)] + γr

|X|∑
i=1

ui [1− pY |X(Φ
−1(i)|i)] (171)

= (1− γr)q′0,Φ + γrq′1,Φ (172)
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where

q′0,Φ ≜
|X|∑
i=1

|X|∑
j=1

ui uj [1− pY |X(Φ
−1(j)|i)] (173)

q′1,Φ ≜
|X|∑
i=1

ui [1− pY |X(Φ
−1(i)|i)] (174)

Similarly, we rewrite q1,Φ as

q1,Φ =
∑
x∈X

Pr(X̃1,1 = x) Pr(Φ(Ỹ1,1) ̸= x|X̃1,1 = x) (175)

=

|X|∑
i=1

ui[1− pY |X(Φ
−1(i)|i)] (176)

= q′1,Φ (177)

Thus, for any γ ∈ [0, 1), we have

∃Φ, ∀r ∈ [n− 1], q
(r)
0,Φ > q1,Φ ⇐⇒ ∃Φ, q′0,Φ > q′1,Φ (178)

Note that q′0,Φ and q′1,Φ correspond to

q′0,Φ = Pr(Φ(Ỹ1,1) ̸= X̃1,j), j ̸= 1 (179)

q′1,Φ = Pr(Φ(Ỹ1,1) ̸= X̃1,1) (180)

if the entries X̃i,j of G(1) were drawn i.i.d. from the distribution π = [u1, . . . , u|X|], instead of

a Markov process. Thus, we recall the discrete random variable W , defined in equations (141)-

(142), with

pW (i) = ui, ∀i ∈ X (181)

pY |W (y|w) = pY |X(y|w), ∀(w, y) ∈ X2 (182)

We note that similar to Appendix A, this equivalence induced by (178) is due to the specific

Markov structure we adopted in Definition 1.
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Then, we can rewrite q′0,Φ and q′1,Φ as

q′0,Φ =
∑
w1∈X

∑
w2∈X

pW (w1)pW (w2)[1− pY |X(Φ
−1(w2)|w1)] (183)

q′1,Φ =
∑
w∈X

pW (w)[1− pY |W (Φ−1(w)|w)] (184)

We first prove the following: ∑
Φ

q′0,Φ − q′1,Φ = 0 (185)

where the summation is over all permutations of X. For brevity, let

Qi,j ≜ pY |W (j|i) ∀i, j ∈ X (186)

Note that from (186), we have

|X|∑
j=1

Qi,j = 1 ∀i ∈ X (187)

|X|∑
i=1

|X|∑
j=1

Qi,j = |X| (188)

Taking the sum over all Φ, we obtain

∑
Φ

q′0,Φ − q′1,Φ =
∑
Φ

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j) −
∑
Φ

|X|∑
i=1

pW (i)Qi,Φ−1(i) (189)

Combining (187)-(189), we now show that both terms on the RHS of (189) are equal to (|X|−1)!.

We first look at the second term on the RHS of (189).

∑
Φ

|X|∑
i=1

pW (i)Qi,Φ−1(i) =

|X|∑
i=1

pW (i)
∑
Φ

Qi,Φ−1(i) (190)

= (|X| − 1)!

|X|∑
j=1

|X|∑
i=1

pW (i)Qi,j (191)

= (|X| − 1)!

|X|∑
i=1

|X|∑
j=1

pW,Y (i, j) (192)

= (|X| − 1)! (193)

October 25, 2023 DRAFT



54

where (191) follows from the fact that for any j ∈ X, we have exactly (|X| − 1)! permutations

assigning j to i (or equivalently Φ−1(i) = j).

Now we look at the first term.

∑
Φ

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j) =

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)
∑
Φ

Qi,Φ−1(j) (194)

=

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)(|X| − 1)!

|X|∑
k=1

Qi,k (195)

= (|X| − 1)! (196)

Again, (195) follows from the fact that for each k ∈ X, there are exactly (|X|−1)! permutations

Φ which map k to j (or equivalently Φ−1(j) = k).

Thus, we have shown that both terms on the RHS of (189) are equal to (|X|−1)!, proving (185).

Now, we only need to show that

∃Φ q′0,Φ − q′1,Φ ̸= 0. (197)

This is because unless q′0,Φ − q′1,Φ = 0 ∀Φ, due to (185), we automatically have a Φ such that

this difference is strictly positive. This follows from the fact if ∃Φ q′0,Φ − q′1,Φ ̸= 0, we have

either

• q′0,Φ − q′1,Φ > 0, which is the desired result, or

• q′0,Φ − q′1,Φ < 0, which from (189) requires the existence of another permutation Φ̃ with

q′
0,Φ̃
− q′

1,Φ̃
> 0.

We will prove (197) by arguing that

q′0,Φ − q′1,Φ = 0 ∀Φ ⇐⇒ pY |W (y|w) = pY (y) ∀(w, y) ∈ X2 (198)

which contradicts our pY |X ̸= pY assumption.

We first prove the “only if” part. Suppose pY |W (y|w) = pY (y), ∀(w, y) ∈ X2. In other words,
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Qi,k = Qj,k, ∀(i, j, k) ∈ X3. Then for any Φ, we have

q′0,Φ =

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j) (199)

=

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qk,Φ−1(j), k ̸= i (200)

=

|X|∑
j=1

pW (j)Qk,Φ−1(j) (201)

=

|X|∑
j=1

pW (j)Qj,Φ−1(j) (202)

= q′1,Φ (203)

finishing the proof of the “only if” part.

Now, we prove the “if” part. Suppose the LHS of (198) holds. In other words, for any Φ

|X|∑
i=1

pW (i)Qi,Φ−1(i) =

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j) (204)

First, we look at the binary case X = {1, 2}. In this case, we obtain

pW (1)Q1,1 + pW (2)Q2,2 = pW (1)2Q1,1 + pW (1)pW (2)Q1,2

+ pW (2)pW (1)Q2,1 + pW (2)2Q2,2 (205)

Q1,1 +Q2,2 = Q1,2 +Q2,1 (206)

Q1,1 +Q2,2 = 1−Q1,1 + 1−Q2,2 (207)

Q1,1 +Q2,2 = 1 (208)

for the identity permutation. This implies that Q1,1 = Q2,1 and Q1,2 = Q2,2 and this in turn

implies pY |W (y|w) = pY (y) ∀(w, y) ∈ X2, concluding the proof for the binary case.

Now, we investigate the larger alphabet sizes (|X| ≥ 3). Since the equality holds for all Φ, we

now carefully select some one-cycle permutations Φ to construct a system of linear equations.

Let Φid be the identity permutation and Φi−j,Φi−k,Φi−j−k denote the one-cycle permutations

with the respective cycles (i j), (i k) and (i j k) for some distinct (i, j, k) triplet. For the rest of

this proof, we will jointly solve the system of equations put forward by these permutations.
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Recall that pW (l) = ul, ∀l ∈ X. Then, Φid leads to

uiQi,i + ujQj,j + ukQk,k +
∑
l ̸=i,j,k

ulQl,l = ui

|X|∑
t=1

utQt,i + uj

|X|∑
t=1

utQt,j + uk

|X|∑
t=1

utQt,k

+
∑
l ̸=i,j,k

ul

|X|∑
t=1

utQt,l (209)

Similarly, Φi−j leads to

uiQi,j + ujQj,i + ukQk,k +
∑
l ̸=i,j,k

ulQl,l = ui

|X|∑
t=1

utQt,j + uj

|X|∑
t=1

utQt,i + uk

|X|∑
t=1

utQt,k

+
∑
l ̸=i,j,k

ul

|X|∑
t=1

utQt,l (210)

When we subtract (210) from (209), we obtain

ui(Qi,i −Qi,j)− uj(Qj,i −Qj,j) = (ui − uj)
|X|∑
t=1

ut(Qt,i −Qt,j) (211)

Equivalently, we have

pW,Y (i, i)− pW,Y (i, j)− pW,Y (j, i) + pW,Y (j, j) = pW (i)pY (i)− pW (i)pY (j)

− pW (j)pY (i) + pW (j)pY (j) (212)

Following the same steps, from Φi−k we get

pW,Y (i, i)− pW,Y (i, k)− pW,Y (k, i) + pW,Y (k, k) = pW (i)pY (i)− pW (i)pY (k)

− pW (k)pY (i) + pW (k)pY (k) (213)

We can rearrange the terms in (213) to obtain

pW,Y (i, k) = pW,Y (i, i)− pW,Y (k, i) + pW,Y (k, k)− pW (i)pY (i)

+ pW (i)pY (k) + pW (k)pY (i)− pW (k)pY (k) (214)
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Furthermore, Φi−j−k gives us

uiQi,k + ujQj,i + ukQk,j +
∑
l ̸=i,j,k

ulQl,l = ui

|X|∑
t=1

utQt,k + uj

|X|∑
t=1

utQt,i

+ uk

|X|∑
t=1

utQt,j +
∑
l ̸=i,j,k

ul

|X|∑
t=1

utQt,l (215)

Subtracting (215) from (210) yields

ui(Qi,j −Qi,k) + uk(Qk,k −Qk,j) = (ui − uk)

 |X|∑
t=1

utQt,j −
|X|∑
t=1

utQt,k

 (216)

Equivalently,

pW,Y (i, j)− pW,Y (i, k)− pW,Y (k, j) + pW,Y (k, k) = pW (i)pY (j)− pW (i)pY (k)

− pW (k)pY (j) + pW (k)pY (k) (217)

Plugging pW,Y (i, k) from (214) into (217) yields

pW,Y (i, j)− pW,Y (i, i)− pW,Y (k, j) + pW,Y (k, i) = pW (i)pY (j)− pW (i)pY (i)

− pW (k)pY (j) + pW (k)pY (i) (218)

Taking a summation over k in (218) gives us

|X|pW,Y (i, j)− |X|pW,Y (i, i)− pY (j) + pY (i) = |X|pW (i)pY (j)− |X|pW (i)pY (i)

− pY (j) + pY (i) (219)

pW,Y (i, j)− pW,Y (i, i) = pW (i)pY (j)− pW (i)pY (i) (220)

Similarly, taking a summation over j in (220) yields

pW (i)− |X|pW,Y (i, i) = pW (i)− |X|pW (i)pY (i) (221)

pW,Y (i, i) = pW (i)pY (i) (222)
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Plugging (222) into (220) yields

pW,Y (i, j)− pW,Y (i, i) = pW (i)pY (j)− pW (i)pY (i) (223)

pW,Y (i, j) = pW (i)pY (j) (224)

Note that i and j are chosen arbitrarily. Therefore the condition given in (204) implies that

pY |W (y|w) = pY (y), ∀(w, y) ∈ X2, concluding the proof of the “if” part.

Hence, we have proved (197). Thus, there exists a deterministic bijective mapping Φ satisfying

q′0,Φ > q′1,Φ and in turn q(r)0,Φ > q′1,Φ, ∀r ∈ [n− 1].

Now choose such a mapping Φ and note that for any γ ∈ [0, 1)

q
(r)
0,Φ − q

′
1,Φ = (1− γr)[q′0(Φ)− q′1(Φ)] (225)

≥ (1− γ)[q′0(Φ)− q′1(Φ)], ∀r ∈ [n− 1] (226)

> 0, ∀r ∈ [n− 1] (227)

Next, define

qmin
0,Φ ≜ (1− γ)q′0,Φ + γq′1,Φ (228)

and choose a τ̄ ∈
(
q′1,Φ, q

min
0,Φ

)
bounded away from both ends of the interval.

Let K̂n ≜ n−
∑n

j=1 Ij and Lj denote the j th 0 in In, j = 1, . . . , K̂n. In other words, Lj holds

the index of the j th retained column C
(2)
j (Φ) of G̃

(2)
Φ in G(1). Similarly, for i with Ii = 0, let

Ri ≜ i−
∑i

l=1 Il store the index of C(1)
i in G̃

(2)
Φ .

Now note that when we have Ii = 1, dH(C
(1)
i , C

(2)
j (Φ)) ∼ Binom(Λn, q

(|i−Lj |)
0,Φ ) and when

Ii = 0, dH(C
(1)
i , C

(2)
Ri

(Φ)) ∼ Binom(Λn, q
′
1,Φ).

Next, we write the misdetection probability Pe,i of C(1)
i as

Pe,i = Pr
(
∃j ∈ [K̂n] : ∆i,j(Φ) ≤ Λnτ̄ , Ii = 1

)
+ Pr

(
∀j ∈ [K̂n] : ∆i,j(Φ) > Λnτ̄ , Ii = 0

)
(229)

≤ Pr
(
∃j ∈ [K̂n] : ∆i,j(Φ) ≤ Λnτ̄ , Ii = 1

)
+ Pr (∆i,Ri

(Φ) > Λnτ̄ , Ii = 0) (230)

where

∆i,j(Φ) ≜ dH(C
(1)
i , C

(2)
j (Φ)). (231)
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From the union bound and Chernoff bound [63, Lemma 4.7.2], we obtain

Pe,i ≤
K̂n∑
j=1

Pr (∆i,j(Φ) ≤ Λnτ̄ , Ii = 1) + Pr (∆i,Ri
(Φ) > Λnτ̄ , Ii = 0) (232)

≤
K̂n∑
j=1

2−ΛnD(τ̄∥q
(|i−Lj |)
0,Φ ) + 2−ΛnD(1−τ̄∥1−q′1,Φ) (233)

It is straightforward to show that D(τ̄∥p) is an increasing function of p for p > τ̄ . Thus ∀i ∈

[n], j ∈ [K̂n], we have

q
(|i−Lj |)
0,Φ ≥ q′0,Φ (234)

D(τ̄∥q(|i−Lj |)
0,Φ ) ≥ D(τ̄∥qmin

0,Φ) (235)

2−ΛnD(τ̄∥q
(|i−Lj |)
0,Φ ) ≤ 2−ΛnD(τ̄∥qmin

0,Φ) (236)

Thus, we have

Pe,i ≤
K̂n∑
j=1

2−ΛnD(τ̄∥q
(|i−Lj |)
0,Φ ) + 2−ΛnD(1−τ̄∥1−q′1,Φ) (237)

≤
K̂n∑
j=1

2−ΛnD(τ∥qmin
0,Φ) + 2−ΛnD(1−τ∥1−q′1,Φ) (238)

= K̂n2
−ΛnD(τ∥qmin

0,Φ) + 2−ΛnD(1−τ∥1−q′1,Φ) (239)

Thus, by simple union bound the total misdetection probability Pe,total can be bounded as

Pe,total ≤
n∑

i=1

Pe,i (240)

≤
n∑

i=1

K̂n2
−ΛnD(τ̄∥qmin

0,Φ) + 2−ΛnD(1−τ̄∥1−q′1,Φ) (241)

= nK̂n2
−ΛnD(τ̄∥qmin

0,Φ) + n2−ΛnD(1−τ̄∥1−q′1,Φ) (242)

≤ n22−ΛnD(τ̄∥qmin
0,Φ) + n2−ΛnD(1−τ̄∥1−q′1,Φ) (243)
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Hence, Pe,total → 0 as n→∞ if the seed size Λn satisfies

ΛnD(τ̄∥qmin
0,Φ)− 2 log n > 0 (244)

ΛnD(1− τ̄∥1− q′1,Φ)− log n > 0 (245)

Thus any seed size Λn satisfying

Λn >
log n

min
{

1
2
D(τ̄∥qmin

0,Φ), D(1− τ̄∥1− q′1,Φ)
} (246)

is sufficient to drive Pe,total to 0. Thus a seed size Λn = Ω(log n) is enough for successful

deletion detection.

APPENDIX C

PROOF OF LEMMA 4

First, observe that from [64, Theorem 3] and the specific Markov structure given in Defini-

tion 1, the rows of the collapsed database X̃ become i.i.d. first-order stationary binary Markov

chains, with the following probability transition matrix and stationary distribution:

P̃ =

γ + (1− γ)u1 (1− γ)(1− u1)

(1− γ)u1 1− (1− γ)u1

 (247)

π̃ =
[
u1 1− u1

]
(248)

For brevity, we let µn ≜ Pr(∃i, j ∈ [n], i ̸= j, H̃
(1)
i = H̃

(1)
j ). Next, from the union bound, we

obtain

µn ≤
∑

(i,j)∈[n]2:i<j

Pr(H̃
(1)
i = H̃

(1)
j ) (249)

≤ n2 max
(i,j)∈[n]2:i<j

Pr(H̃
(1)
i = H̃

(1)
j ) (250)

Due to stationarity of P̃, this maximum is equal to Pr(H̃
(1)
1 = H̃

(1)
s+1) for some s. For brevity, let

Q ≜ P̃s and q ≜ Pr(H̃
(1)
1 = H̃

(1)
s+1). Observe that H̃(1)

1 and H̃(1)
s+1 are correlated Binom(mn, 1−u1)

random variables and for any s, Q has positive values, i.e., the collapsed Markov chain is

irreducible for any s. Now, we have
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q =
mn∑
r=0

Pr(H̃
(1)
1 = r) Pr(H̃

(1)
s+1 = r|H̃(1)

1 = r) (251)

=
mn∑
r=0

(
m

r

)
(1− u1)rumn−r

1 Pr(H̃
(1)
s+1 = r|H̃(1)

1 = r) (252)

Note that since the rows of X̃ are i.i.d., we have

Pr(H̃
(1)
s+1 = r|H̃(1)

1 = r) = Pr(M +N = r) (253)

where M ∼ Binom(r,Q2,2) and N ∼ Binom(mn − r,Q1,2) are independent. Note that there are

two ways leading to state 2 in the collapsed column after s steps. The first one is the state 2

staying in the same state after s steps, and the second one is state 1 being converted to state 2

after s steps. Here the Binomial random variables E and F keep counts of the former and the

latter ways, respectively.

Then, from Stirling’s approximation [50, Chapter 3.2] on the factorial terms in the Binomial

coefficient and [49, Theorem 11.1.2], we get

q =
mn∑
r=0

(
mn

r

)
(1− u1)rumn−r

1 Pr(M +N = r) (254)

≤ e√
2π
mn

−1/2

mn∑
r=0

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r) (255)

where Πr =
r

mn
(1− r

mn
). Let

T =
mn∑
r=0

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r) (256)

= T1 + T2 (257)

where

T1 =
∑

r:D( r
mn

∥1−u1)>
ϵ2n

2 loge 2

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r) (258)

T2 =
∑

r:D( r
mn

∥1−u1)≤
ϵ2n

2 loge 2

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r), (259)

ϵn > 0, which is described below in more detail, is such that ϵn → 0 as n→∞.
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First, we look at T1. Note that for any r ∈ N, we have Πr ≤ mn
2, suggesting the multiplicative

term in the summation in (258) is polynomial with mn. Note that we can simply separate the

cases r = 0, r = mn whose probabilities vanish exponentially in mn. Therefore, as long as

mnϵ
2
n →∞, T1 has a polynomial number of elements that decay exponentially with mn. Thus

T1 → 0 as n→∞ (260)

as long as mnϵ
2
n →∞.

Now, we focus on T2. From Pinsker’s inequality [49, Lemma 11.6.1], we have

D

(
r

mn

∥∥∥1− u1) ≤ ϵ2n
2 loge 2

⇒ V
(
r

mn

, 1− u1
)
≤ ϵn (261)

where V denotes the (unnormalized) total variation distance between the Bernoulli distributions

with given parameters. Therefore∣∣∣{r : D( r

mn

∥∥∥1− u1) ≤ ϵ2n
2 loge 2

}
∣∣∣ ≤ ∣∣∣{r : V( r

mn

, 1− u1
)
≤ ϵn}

∣∣∣ (262)

= O(mnϵn) (263)

for small ϵn. Furthermore, if V
(

r
mn
, 1− u1

)
≤ ϵn, we have

Π−1
r ≤

1

(1− u1)u1
(264)

Now, we investigate Pr(M +N = r) for the values of r in the interval mn(1− u1)±mnϵn.

Pr(M +N = r) =
r∑

i=1

Pr(M = r − i) Pr(N = i) + Pr(M = r) Pr(N = 0) (265)

=
r∑

i=1

(
r

i

)
Qr−i

2,2 (1−Q2,2)
i

(
mn − r

i

)
Qi

1,2(1−Q1,2)
mn−r−i

+Qr
2,2Q

mn−r
1,1 (266)

Again, from Stirling’s approximation [50, Chapter 3.2] on the factorial terms in the Binomial

coefficient in (266) and from [49, Theorem 11.1.2], we have

Pr(M +N = r) ≤ Qr
2,2Q

mn−r
1,1 +

e2

2π
[r(mn − r)]−1/2U (267)
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where

U =
r∑

i=1

Π−1
i/rΠ

−1
i/mn−r2

−rD(1− i
r
∥Q2,2)−(mn−r)D( i

mn−r
∥Q1,2) (268)

Then, from r ∈ [mn(1− u1 − ϵn),mn(1− u1 + ϵn)] we obtain

Pr(M +N = r) ≤ Qr
2,2Q

mn−r
1,1 +

e2

2π

mn
−1√

(1− u1 − ϵn)(u1 − ϵn)
U (269)

and

U ≤
r∑

i=1

Π−1
i/rΠ

−1
i/mn−r2

−mn(1−u1−ϵn)D(1− i
r
∥Q2,2)2−mn(u1−ϵn)D( i

mn−r
∥Q1,2) (270)

=
∑

i/∈R(ϵn)

Π−1
i/rΠ

−1
i/mn−r2

−mn(1−u1−ϵn)D(1− i
r
∥Q2,2)2−mn(u1−ϵn)D( i

mn−r
∥Q1,2)

+
∑

i∈R(ϵn)

Π−1
i/rΠ

−1
i/mn−r2

−mn(1−u1−ϵn)D(1− i
r
∥Q2,2)2−mn(u1−ϵn)D( i

mn−r
∥Q1,2) (271)

where we define the set R(ϵn) as

R(ϵn) ≜
{
i ∈ [r] : D

(
1− i

r

∥∥∥Q2,2

)
, D
( i

mn − r

∥∥∥Q1,2

)
≤ ϵ2n

2 loge 2

}
(272)

Note that similar to T1, the first summation in (271) vanishes exponentially in mn whenever

mnϵ
2
n → ∞, and using Pinsker’s inequality once more, the second term can be upper bounded

by

O(|R(ϵn)|) = O(mnϵn) (273)

Now, we choose ϵn = mn
− 1

2Vn for some Vn satisfying Vn = ω(1) and Vn = o(m
1/2
n ). Thus, T1

vanishes exponentially fast since mnϵ
2
n = V 2

n →∞ and

Pr(M +N = r) = O(ϵn) (274)

T = O(mnϵ
2
n) = O(V 2

n ) (275)

µn = O(n2mn
−1/2V 2

n ) (276)

By the assumption mn = ω(n4), we have mn = n4Zn for some Zn satisfying lim
n→∞

Zn =∞.

October 25, 2023 DRAFT



64

Now, taking Vn = o(Z
1/4
n ) (e.g. Vn = Z

1/6
n ), we get

µn ≤ O(Z−1/2
n V 2

n ) = o(1) (277)

Thus mn = ω(n4) is sufficient to have µn → 0 as n→∞, concluding the proof.

APPENDIX D

PROOF OF ACHIEVABILITY OF THEOREM 3

The proof of the achievability part follows from successive union bounds exploiting the

following:

• For any typical row Y Kn of Y, there are approximately 2KnH(X|Y ) jointly typical sequences

with respect to pX,Y .

• If the output of the synchronization channel has length Kn then there are at least kmin =
⌈

Kn

smax

⌉
retained (not deleted) elements.

• For the number of columns n, the number of deletion patterns with kmin retained elements

is (
n

kmin

)
≤ 2nHb(kmin/n) (278)

• Any stretched row has the same probability as the original row.

• If the original length-n sequence and the retained length-kmin sequence after the deletion

channel are ϵ-typical with respect to pX , then the complementary length-(n− kmin) subse-

quence is ϵ̃-typical with respect to pX , where ϵ̃ = n+kmin

n−kmin
.

• The cardinality of the set of ϵ̃-typical sequences of length n − kmin with respect to pX is

approximately 2(n−kmin)H(X).

We need to show that for a given pair of matching rows, WLOG, Xn
1 of X and Y Kn

t of Y

with σn(1) = t, the probability of error Pe ≜ Pr(σ̂n(1) ̸= t) of the following matching scheme

can be made arbitrarily small asymptotically where Kn =
∑n

j=1 S1,j is the random variable

corresponding to the length of Y Kn
t . The matching scheme we propose follows these steps:

1) For all j ∈ [n], discard the j th column of X if Aj = 1 to obtain X̄ whose column size is

n− A where A =
∑n

j=1Aj .
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2) Stretch each row X̄n−A
i = X̄i,1, . . . , X̄i,n−A of X̄ into X̃(n−A)smax

i , by repeating each element

of X̄n−A
i smax times as follows

X̃
(n−A)smax

i = 1smax ⊗ X̄i,1, . . . , 1
smax ⊗ X̄i,n−A (279)

where 1smax is an all-one row vector of length smax and ⊗ denotes the Kronecker product.

3) Fix ϵ > 0. If Kn < k ≜ n(E[S]− ϵ) declare error, whose probability is denoted by κn where

k is assumed to be an integer for computational simplicity. Otherwise, proceed with the next

step.

4) If A < a = n(αδ− ϵ) declare error, whose probability is denoted by µn. Otherwise, proceed

with the next step.

5) Match the tth row Y Kn
t of Y Xn

1 of X, assigning σ̂n(1) = t, if i = 1 is the only index in [mn]

such that i) X̄n−A
i is ϵ-typical and ii) X̃(n−A)smax

i contains a subsequence jointly ϵ-typical

with Y Kn
t with respect to pX,Y . Otherwise, declare a collision error.

Since additional columns in Y and additional detected deleted columns in X would decrease

the collision probability, we have

Pr(collision between 1 and i|Kn ≥ k,A ≥ a) ≤ Pr(collision between 1 and i||Kn = k,A = a)

(280)

for any i ∈ [mn] \ {1}. Thus, we can focus on the case Kn = k, A = a, as it yields an upper

bound on the error probability of our matching scheme.

Let A(n−a)
ϵ (X) denote the set of ϵ-typical (with respect to pX) sequences of length n − a

and Aϵ(X
k|Y k

t ) denote the set of sequences of length k jointly ϵ-typical (with respect to pX,Y )

with Y k
t . For the matching rows Xn

1 , Y k
t of X and Y, define the pairwise collision probability

between Xn
1 and Xn

i for any i ∈ [mn] \ {1} as

Pcol,i ≜ Pr(∃zk : zk ∈ Aϵ(X
k|Y k

t ) and zk is a subsequence of X̃(n−a)smax

i .). (281)

Therefore given the correct labeling for Y k
t ∈ Y is Xn

1 ∈ X, the probability of error Pe can
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be bounded as

Pe ≤ Pr(∄zk : zk ∈ Aϵ(X
k|Y k

t ) and zk is a subsequence of X̃(n−a)smax

1 .)

+ Pr(Xn
1 /∈ A(n)

ϵ (X)) +
2nR∑
i=2

Pcol,i + κn + µn (282)

≤ 2ϵ+
2nR∑
i=2

Pcol,i + κn + µn (283)

≤ 2ϵ+ 2nRPcol,2 + κn + µn (284)

where (284) follows from the fact the the rows are i.i.d. and thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}.

We now upper bound Pcol,2. First, we investigate repetition distributions with 1
smax

E[S] ≥ 1−αδ
|X| .

Let F (n, k, |X|) denote the number of |X|-ary sequences of length n, which contain a fixed |X|-

ary sequence of length k. We note that this F (n, k, |X|) is constant for any |X|-ary sequence

of length k [65, Lemma 1]. Now we define Gzk(nsmax, k, |X|) as the number of smax times

stretched sequences of length nsmax, containing a |X|-ary sequence zk of length k. We stress

that this counting function Gzk will not be independent of zk as is the case for the counting

function F . For example, let smax = 2, X = {0, 1}, n = 2, k = 2, zk1 = 01 and zk2 = 00. Then we

have Gzk1
(nsmax, k, |X|) = 1 since only 0011 contains zk1 = 01, whereas Gzk2

(nsmax, k, |X|) = 3

since 0000, 0011 and 1100 all contain zk2 = 00.

Observe that the maximum value of Gzk(nsmax, k, |X|) is attained when zk consists only

of one symbol repeated k times, as this grouping of elements in zk yields the maximum

number of possible elementwise replicated sequences. WLOG, let zk = 00 . . . 0. Then, to count

Gzk(nsmax, k, |X|), we group the consecutive smax 0’s in zk together, allowing the last group

to have possibly fewer than smax elements. It is clear that there are
⌈

k
smax

⌉
of such groups

of 0’s. Since we put a stretching constraint on the sequences of length nsmax when we count

Gzk(nsmax, k, |X|), we are looking for sequences of length n, containing a subsequence of length⌈
k

smax

⌉
. Thus, counting this number will be the same as counting F

(
n,
⌈

k
smax

⌉
, |X|

)
. Thus we

have

Gzk(nsmax, k, |X|) ≤ F (n, ⌈k/smax⌉ , |X|) , ∀zk ∈ Xk (285)

We note that the inequality given in (285) is the tightest upper bound independent of zk, equality

being achieved when zk is a constant (e.g., all-zeros) sequence.
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Now, let

T (zk, An) ≜ {xn ∈ Xn : x̄(n−a) ∈ A(n−a)
ϵ (X) and x̃(n−a)smax contains zk.} (286)

Then, we obtain

|T (zk, An)| ≤ Gzk((n− a)smax, k, |X|) (287)

≤ F (n− a, ⌈k/smax⌉ , |X|) (288)

For the sake of computational simplicity, suppose k
smax

is an integer. Since 1
smax

E[S] ≥ 1−αδ
|X| ,

from [65] and [49, Chapter 11] we have the following upper bound:

F (n− a, k/smax, |X|) ≤ (n− a)2(n−a)Hb( k
smax(n−a))(|X| − 1)(n−a− k

smax
) (289)

Furthermore, for any xn ∈ T (zk, An), since T (zk, An) ⊆ A
(n−a)
ϵ (X), we have

pXn(xn) ≤ 2−(n−a)(H(X)−ϵ) (290)

and since the rows Xn
i of X are i.i.d., we have

Pr(Xn
2 ∈ T (zk, An)|Xn

1 ∈ T (zk, An)) = Pr(Xn
2 ∈ T (zk, An)) (291)

Finally, we have

|Aϵ(X
k|Y k

t )| ≤ 2k(H(X|Y )+ϵ) (292)
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Combining (288)-(292), we can upper bound Pcol,2 as

Pcol,2 ≤
∑

zk∈Aϵ(Xk|Y k
t )

Pr(Xn
2 ∈ T (zk, An)) (293)

=
∑

zk∈Aϵ(Xk|Y k
t )

∑
xn∈T (zk,An)

pXn(xn) (294)

≤
∑

zk∈Aϵ(Xk|Y k
t )

∑
xn∈T (zk,An)

2−(n−a)(H(X)−ϵ) (295)

=
∑

zk∈Aϵ(Xk|Y k
t )

|T (zk, An)|2−(n−a)(H(X)−ϵ) (296)

≤
∑

zk∈Aϵ(Xk|Y k
t )

2−(n−a)(H(X)−ϵ)F (n− a, k/smax, |X|) (297)

= |Aϵ(X
k|Y k

t )|2−(n−a)(H(X)−ϵ)F (n− a, k/smax, |X|) (298)

≤ |Aϵ(X
k|Y k

t )|(n− a)2
−(n−a)[H(X)−ϵ−Hb(

k
smax(n−a)

)](|X| − 1)(n−a− k
smax

) (299)

≤ 2k(H(X|Y )+ϵ)(n− a)2−(n−a)[H(X)−ϵ−Hb(
k

smax(n−a)
)](|X| − 1)(n−a− k

smax
) (300)

Thus, we have the following upper bound on the error probability

Pe ≤ 2ϵ+ 2nR2k(H(X|Y )+ϵ)(n− a)2−(n−a)[H(X)−ϵ−Hb(
k

smax(n−a)
)](|X| − 1)(n−a− k

smax
) + κn + µn

(301)

By LLN, we have κn → 0 and µn → 0 as n → ∞. Hence, we can argue that any database

growth rate R satisfying

R <
[
(1− αδ)

(
H(X)−Hb

(
E[S]

(1− αδ)smax

))
−
(
1− αδ − E[S]

smax

)
log (|X| − 1)− E[S]H(X|Y )

]+
(302)

is achievable, by taking ϵ small enough.

Now, we focus on general repetition distributions. For any subsequence zk of smax-times

stretched sequence of length (n − a)smax, let r(zk) be the number of runs in zk with at most

smax elements and note that r(zk) ≤ n − a. Then, let z̃r(zk) be the sequence storing the values

of each run in zk. Observe that for any zk ∈ Aϵ(X
k|Y k

t ), we have z̃r(zk) ∈ A(r(zk))
ϵ (X).

For any such grouping of r(zk) runs, the ϵ-typicality of xn = (x1, . . . , xn) ∈ T (zk, An)

and z̃r(z
k) with respect to pX implies the ϵ̃-typicality of the remaining sequence of length
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n− a− r(zk) obtained after discarding z̃r(zk) from x̄n−a, where ϵ̃ = n−a+r(zk)
n−a−r(zk)

ϵ. Furthermore, by

a similar argument made above, we stress that T (zk, An) attains its maximum value when r(zk)

is the minimum, which is kmin ≜ ⌈ k
smax
⌉, attained when zk is a smax times stretched sequence

itself. Therefore for any zk ∈ Aϵ(X
k|Y k

t ), taking the union bound over all possible groupings

with r(zk) runs, the cardinality of T (zk, An) can be upper bounded as

|T (zk, An)| ≤
(
n− a
kmin

)
|A(n−a−kmin)

ϵ̃ (X)| (303)

≤ 2
(n−a)Hb

(
kmin
n−a

)
|A(n−a−k̂)

ϵ̃ (X)| (304)

≤ 2
(n−a)Hb

(
kmin
n−a

)
2(n−a−kmin)(H(X)+ϵ̃) (305)

= 2
n
[
(1− a

n
)Hb

(
kmin
n−a

)
+(1− a

n
− kmin

n
)(H(X)+ϵ̃)

]
(306)

Plugging (306) into (296) and following the same steps, one can show that any rate R

satisfying

R <

[
E[S]
smax

H(X)− (1− αδ)Hb

(
E[S]

(1− αδ)smax

)
− E[S]H(X|Y )

]+
(307)

is achievable. Simply taking the maximum of the two proven achievable rates ((302) and (307))

when 1
smax

E[S] ≥ 1−αδ
|X| yields (89). This concludes the proof.

APPENDIX E

PROOF OF COROLLARY 3

Let E denote the empty string and X̃ denote the sequence obtained after discarding the

detected deleted entries from X2. The dependence of X̃ on X2 and A2 and that of Y on X2

and S2 are omitted for brevity.

We start with the fact that since the entries of X2 are independent, the deleted entries do not

offer any information. Thus, we can discard them without any information loss. Thus, we have

I(X2;Y,A2) = I(X̃;Y |A2) (308)

= H(X̃|A2)−H(X̃|Y,A2) (309)
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We have

H(X̃|A2) =
∑

a2∈{0,1}2
Pr(A2 = a2)H(X̃|A2 = a2) (310)

= Pr(A2 = 00)H(X̃|A2 = 00) + Pr(A2 = 01)H(X̃|A2 = 01)

+ Pr(A2 = 10)H(X̃|A2 = 10) + Pr(A2 = 11)H(X̃|A2 = 11) (311)

= (1− αδ)22H(X) + αδ(1− αδ)H(X) + (1− αδ)αδH(X) + 0 (312)

= 2(1− αδ)H(X) (313)

Furthermore, we have

H(X̃|Y,A2) =
∑
y,a2

Pr(Y = y, A2 = a2)H(X̃|Y = y, A2 = a2) (314)

= Pr(Y = E,A2 = 00)H(X̃|Y = E,A2 = 00)

+ Pr(Y = E,A2 = 01)H(X̃|Y = E,A2 = 01)

+ Pr(Y = E,A2 = 10)H(X̃|Y = E,A2 = 10)

+
∑
x∈X

Pr(Y = x,A2 = 00)H(X̃|Y = x,A2 = 00)

+
∑
x∈X

Pr(Y = x,A2 = 01)H(X̃|Y = x,A2 = 01)

+
∑
x∈X

Pr(Y = x,A2 = 10)H(X̃|Y = x,A2 = 10) (315)

Note that in (315), we discarded the terms with A2 = 11 for |Y | ≥ 1, since in that case we have

Pr(|Y | ≥ 1, A2 = 11) = 0. We can further discard the terms with |Y | = n = 2, since in that

case we have no deletion and Y = Y 2 = X2. Finally, we can also discard the last two terms in

(315) since for any x ∈ X we have

H(X̃|Y = x,A2 = 01) = H(X̃|Y = x,A2 = 10) = 0 (316)
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Thus, we have

H(X̃|Y,A2) = δ2(1− α)22H(X) + δ2(1− α)αH(X) + δ2α(1− α)H(X)

+
∑
x∈X

Pr(Y = x,A2 = 00)H(X̃|Y = x,A2 = 00) (317)

= 2δ2(1− α)H(X) +
∑
x∈X

Pr(Y = x,A2 = 00)H(X̃|Y = x,A2 = 00) (318)

We first compute Pr(Y = x,A2 = 00). For any x ∈ X, we have

Pr(Y = x,A2 = 00) =
∑
x2∈X2

Pr(Y = x,A2 = 00, X2 = x2) (319)

= Pr(Y = x,A2 = 00, X2 = xx)

+ 2
∑
y ̸=x

Pr(Y = x,A2 = 00, X2 = xy) (320)

= pX(x)
22δ(1− δ)(1− α) + 2

∑
y ̸=x

pX(x)pX(y)δ(1− δ)(1− α) (321)

= 2δ(1− δ)(1− α)pX(x)
∑
y∈X

pX(y) (322)

= 2δ(1− δ)(1− α)pX(x) (323)

Now, we compute H(X̃|Y = x,A2 = 00). For any x ∈ X we have 2|X| − 1 possible patterns

for X̃ , given that Y = x. 2|X|−2 of these patterns have probabilities proportional to pX(x)pX(y)

y ∈ X \ {x} and the remaining pattern has probability proportional to 2pX(x)
2. Thus we have

H(X̃|Y = x,A2 = 00) = H
(pX(1)pX(x)

c
,
pX(x)pX(1)

c
, . . . ,

2(pX(x))
2

c
,

. . . ,
pX(|X|)pX(x)

c
,
pX(x)pX(|X|)

c

)
(324)

where the normalization constant c is c = 2pX(x). Thus,

H(X̃|Y = x,A2 = 00) = H
(pX(1)

2
,
pX(1)

2
, . . . , pX(x), . . . ,

pX(|X|)
2

,
pX(|X|)

2

)
(325)

= H(X) + 1− pX(x) (326)
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Combining (318)-(326), we can compute H(X̃|Y,A2) as

H(X̃|Y,A2) = 2δ2(1− α)H(X) +
∑
x∈X

2δ(1− δ)(1− α)pX(x)[H(X) + 1− pX(x)] (327)

= 2δ2(1− α)H(X) + 2δ(1− δ)(1− α) (H(X) + 1− q̂) (328)

= 2δ(1− α)H(X) + 2δ(1− δ)(1− α) (1− q̂) (329)

Finally, combining (313) and (329), we obtain

I(X̃;Y K |A2) = H(X̃|A2)−H(X̃|Y (X2), A2) (330)

= 2(1− αδ)H(X)− 2δ(1− α)H(X)− 2δ(1− δ)(1− α) (1− q̂) (331)

= 2(1− δ)H(X)− 2δ(1− δ)(1− α) (1− q̂) (332)

Thus, we have

1

2
I(X2;Y K , A2) = (1− δ)H(X)− δ(1− δ)(1− α) (1− q̂) (333)

concluding the proof.

APPENDIX F

PROOF OF COROLLARY 4

We start by observing that

I(X2;Y,A2) = I(X2;Y, |Y |, A2) (334)

= H(X2)−H(X2|Y, |Y |, A2) (335)

= 2H(X)−H(X2|Y, |Y |, A2) (336)
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Furthermore, we have

H(X2|Y, |Y |, A2) =
2∑

i=0

Pr(|Y | = i)H(X2|Y, |Y | = i, A2) (337)

= δ2H(X2|Y, |Y | = 0, A2)

+ 2δ(1− δ)H(X2|Y, |Y | = 1, A2)

+ (1− δ)2H(X2|Y, |Y | = 2, A2) (338)

= δ22H(X)

+ 2δ(1− δ)H(X2|Y, |Y | = 1, A2)

+ (1− δ)22H(X|Y ) (339)

= δ22H(X)

+ 2δ(1− δ)α[H(X) +H(X|Y )]

+ 2δ(1− δ)(1− α)H(X2|Y, |Y | = 1, A2 = 00)

+ (1− δ)22H(X|Y ) (340)

Note that we can rewrite H(X2|Y, |Y | = 1, A2 = 00) as

H(X2|Y, |Y | = 1, A2 = 00) = H(X2|Y, |Y | = 1) (341)

= 2H(X)− I(X2;Y ||Y | = 1) (342)

= 2H(X)− [H(Y )−H(Y |X2, |Y | = 1)] (343)

where we have

H(Y |X2, |Y | = 1) =
∑
x2∈X2

Pr(X2 = x2)H(Y |X2 = x2, |Y | = 1) (344)

Writing the sum in (344) explicitly, we obtain

H(Y |X2, |Y | = 1) = (1− p)2H(Y |X2 = 00, |Y | = 1) + p2H(Y |X2 = 11, |Y | = 1)

+ p(1− p)H(Y |X2 = 01, |Y | = 1)

+ p(1− p)H(Y |X2 = 10, |Y | = 1) (345)
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Observing the following,

H(Y |X2 = 00, |Y | = 1) = H(Y |X = 0) (346)

H(Y |X2 = 11, |Y | = 1) = H(Y |X = 1) (347)

H(Y |X2 = 01, |Y | = 1) = H(V ) (348)

H(Y |X2 = 10, |Y | = 1) = H(V ) (349)

H(Y |X = 0) +H(Y |X = 1) = 2

[
1

2
H(Y |X = 0) +

1

2
H(Y |X = 1)

]
(350)

= 2H(V |U) (351)

we obtain

H(Y |X2, |Y | = 1) = (1− p)H(Y |X = 0)− p(1− p)H(Y |X = 0)

+ pH(Y |X = 1)− p(1− p)H(Y |X = 1)

+ 2p(1− p)H(V ) (352)

= H(Y |X) + 2p(1− p)I(U ;V ) (353)

Hence, we have

H(X2|Y, |Y | = 1, A2 = 00) = 2H(X)− I(X;Y ) + 2p(1− p)I(U ;V ) (354)

Combining (336)-(354), we have

1

2
I(X2;Y K , A2) = (1− δ)I(X;Y )− 2δ(1− δ)(1− α)p(1− p)I(U ;V ) (355)

concluding the proof.

APPENDIX G

PROOF OF THEOREM 4

First, we focus on δ ≤ 1 − q̂ and prove the achievability part. For a given pair of matching

rows, WLOG, Xn
1 of X and Y Kn

t of Y with σn(1) = t, let Pe ≜ Pr(σ̂n(1) ̸= t) be the probability

of error of the following matching scheme:

1) Construct the collapsed histogram vectors H̃(1),n
j and H̃(2),Kn

j as in (71)-(72).
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2) Check the uniqueness of the entries H̃(1)
j j ∈ [n] of H̃(1),n. If there are at least two that are

identical, declare a detection error whose probability is denoted by µn. Otherwise, proceed

with Step 3.

3) ∀i ∈ [n] if ∄j ∈ [Kn], H̃
(1)
i = H̃

(2)
j , declare the ith column of X deleted, assigning i ∈ Îdel.

Note that conditioned on Step 2, this step is error-free.

4) Match the tth row Y Kn
t of Y with the 1st row Xn

1 of X, assigning σ̂n(1) = t if the 1st row

X̂Kn
1 (Îdel) of X̂ is the only row of X̂ equal to Y Kn

t where X̂Kn
i (Îdel) is obtained by discarding

the elements of Xn
i whose indices lie in Îdel. Otherwise, declare a collision error.

Let I(δ) be the set of all deletion patterns with up to nδ deletions. For the matching rows Xn
1 ,

Y k
t of X and Y, define the pairwise adversarial collision probability between Xn

1 and Xn
i for

any i ∈ [mn] \ {1} as

Pcol,i ≜ Pr(∃Îdel ∈ I(δ) : X̂Kn
i (Îdel) = Y Kn

t ) (356)

= Pr(∃Îdel ∈ I(δ) : X̂Kn
i (Îdel) = X̂Kn

1 (Îdel)). (357)

Note that the statement ∃Îdel ∈ I(δ) : X̂Kn
i (Îdel) = X̂Kn

1 (Îdel) is equivalent to the case when the

Hamming distance between Xn
i and Xn

1 being upper bounded by nδ. In other words,

Pcol,i = Pr(dH(X
n
1 , X

n
i ) ≤ nδ) (358)

where

dH(X
n
1 , X

n
i ) =

n∑
j=1

1[X1,j ̸=Xi,j ] (359)

Note that due to the i.i.d. nature of the database elements, dH(Xn
1 , X

n
i ) ∼ Binom(n, 1 − q̂).

Thus, for any δ ≤ 1− q̂, using Chernoff bound [63, Lemma 4.7.2], we have

Pcol,i = Pr(dH(X
n
1 , X

n
i ) ≤ nδ) (360)

≤ 2−nD(δ∥1−q̂) (361)

Therefore given the correct labeling for Y k
t ∈ Y is Xn

1 ∈ X, the probability of error Pe can
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be bounded as

Pe ≤ Pr(∃i ∈ [mn] \ {1} : X̂Kn
i = X̂Kn

1 ) (362)

≤
2nR∑
i=2

Pcol,i + κn (363)

≤ 2nRPcol,2 + κn (364)

where (364) follows from the fact the the rows are i.i.d. and thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}.

Combining (361)-(364), we get

Pe ≤ 2nR Pr(dH(X
n
1 , X

n
i ) ≤ nδ) + κn (365)

≤ 2nR2−nD(δ∥1−q̂) + κn (366)

= 2−n[D(δ∥1−q̂)−R] + κn (367)

By Lemma 4, κn → 0 as n→∞. Thus, we argue that any rate R satisfying

R < D(δ∥1− q̂) (368)

is achievable.

Now we prove the converse part. Suppose Pe → 0. Then, we have

Pe = Pr(∃i ∈ [mn] \ {1} : dH(Xn
1 , X

n
i ) ≤ nδ) (369)

= 1− Pr(∀i ∈ [mn] \ {1} : dH(Xn
1 , X

n
i ) > nδ) (370)

= 1−
mn∏
i=2

Pr(dH(X
n
1 , X

n
i ) > nδ) (371)

= 1−
mn∏
i=2

[1− Pr(dH(X
n
1 , X

n
i ) ≤ nδ)] (372)

= 1− [1− Pr(dH(X
n
1 , X

n
2 ) ≤ nδ)]mn−1 (373)

where (370)-(373) follow from the i.i.d.ness of the rows of X. Since Dn,2 ∼ Binom(n, 1 − q̂),

for δ ≤ 1− q̂, from [63, Lemma 4.7.2], we obtain

Pr(Dn,2 ≤ nδ) ≥ 2−nD(δ∥1−q̂)

√
2n

(374)
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Plugging (374) into (373), we get

Pe ≥ 1−
[
1− 2−nD(δ∥1−q̂)

√
2n

]mn−1

(375)

Now let y = −2−nD(δ∥1−q̂)
√
2n

∈ (−1, 0). Then, we get

Pe ≥ 1− (1 + y)mn−1 (376)

Since y ≥ −1, and mn ∈ N, we have

1 + y(mn − 1) ≤ (1 + y)mn−1 ≤ ey(mn−1) (377)

where the LHS of (377) follows from Bernoulli’s inequality [66, Theorem 1] and the RHS of

(377) follows from the fact that

∀x ∈ R, ∀r ∈ R≥0 (1 + x)r ≤ exr (378)

Thus, we get

Pe ≥ 1− (1 + y)mn−1 (379)

≥ 1− ey(mn−1) (380)

≥ 0 (381)

since y < 0, mn − 1 > 0. Note that since Pe → 0, by the Squeeze Theorem [66, Theorem 2],

we have

lim
n→∞

1− ey(mn−1) → 0. (382)

This, in turn, implies ymn → 0 since the exponential function is continuous everywhere. In

other words,

lim
n→∞

− 2−nD(δ∥1−q̂)

√
2n

mn → 0. (383)
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Equivalently, from the continuity of the logarithm function, we get

lim
n→∞

− nD(δ∥1− q̂) + logmn −
1

2
log(2n)→ −∞ (384)

lim
n→∞

− n
[
D(δ∥1− q̂)− 1

n
logmn +

log(2n)

2n

]
→ −∞ (385)

lim
n→∞

[
D(δ∥1− q̂)− 1

n
logmn +

log(2n)

2n

]
≥ 0 (386)

This implies

D(δ∥1− q̂) ≥ lim
n→∞

1

n
logmn (387)

= R (388)

finishing the proof for δ ≤ 1− q̂. Thus, we have shown that

Cadv(δ) = D(δ∥1− q̂) (389)

for δ ≤ 1− q̂.

We argue that for δ > 1− q̂, the adversarial matching capacity is zero, by using two facts: i)

Since the adversarial deletion budget is an upper bound on deletions, the adversarial matching

capacity satisfies

Cadv(δ) ≤ Cadv(δ′), ∀δ′ ≤ δ (390)

and ii) Cadv(1− q̂) = 0. Thus, ∀δ > 1− q̂, Cadv(δ) = 0. This concludes the proof.

APPENDIX H

PROOF OF THEOREM 5

First, note that the converse part of Theorem 5 (equation (113)) is trivially true since C(0) is

a non-decreasing function of the seed size Λn. Hence it is sufficient to prove the achievability

part of Theorem 5 (equation (112)).

For the achievability, we use a matching scheme which i) utilizes replica detection and marker

addition as done in Section III-C and ii) checks the existence of jointly typical subsequences as

done in Section IV-A. The matching scheme we propose is as follows:

1) Perform replica detection as in Section III-A. The probability of error of this step is denoted

by ρn.
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2) Based on the replica detection step, place markers between the noisy replica runs of different

columns to obtain Ỹ. Note that at this step we cannot detect runs of length 0 as done

in Section III-C. Therefore conditioned on the success of the replica detection we have

K̃n =
∑n

j=1 1[Sj ̸=0] runs separated with markers.

3) Fix ϵ > 0. If Kn < k ≜ n(E[S] − ϵ) or K̂n < k̂ ≜ n(1 − δ − ϵ) declare error, whose

probability is denoted by κn where k and k̂ are assumed to be integers for computational

simplicity. Otherwise, proceed with the next step.

4) Match the tth row Y Kn
t of Y Xn

i of X, assigning σ̂n(i) = t, if i is the only index in [mn]

such that i) Xn
i is ϵ-typical with respect to pX and ii) Xn

i contains a subsequence of length

K̃n, jointly ϵ-typical with Ỹ K
t with respect to pX,Y,Ŝ where Ŝ ∼ pŜ with

pŜ(s) =


pS(s)
1−δ

if s ∈ {1, . . . , smax}

0 otherwise
(391)

and

Pr(Y S = yS|X = x, Ŝ = s) =
s∏

j=1

pY |X(yj|x). (392)

Otherwise, declare a collision error.

Since additional runs in Y and additional columns in each run would decrease the collision

probability, we have

Pr(collision between 1 and i|Kn ≥ k, K̃n ≥ k̃)

≤ Pr(collision between 1 and i||Kn = k, K̃n = k̃) (393)

for any i ∈ [mn] \ {1}. Thus, for the sake of simplicity, we can focus on the case K = k as it

yields an upper bound on the error probability of our matching scheme.

Let A(n)
ϵ (X) denote the set of ϵ-typical (with respect to pX) sequences of length n and

Aϵ(X
k̂|Y k

t , Ŝ
k̂) denote the set of sequences of length k̂ jointly ϵ-typical (with respect to pX,Y,Ŝ)

with Y k
t conditioned on Ŝn. For the matching rows Xn

1 , Y k
t of X and Y, define the pairwise

collision probability between Xn
1 and Xn

i where i ̸= 1 as

Pcol,i ≜ Pr(Xn
i ∈ A(n)

ϵ (X) and ∃zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂) which is a subsequence of Xn

i .). (394)
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Therefore given the correct labeling for Y k
t ∈ Y is Xn

1 ∈ X, the probability of error Pe can be

bounded as

Pe ≤ Pr(∄zk̂ : zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂) and zk̂ is a subsequence of Xn

1 .)

+ Pr(Xn
1 /∈ A(n)

ϵ (X)) +
2nR∑
i=2

Pcol,i + κn + ρn (395)

≤ 2ϵ+
2nR∑
i=2

Pcol,i + κn + ρn (396)

≤ 2ϵ+ 2nRPcol,2 + κn + ρn (397)

where (397) follows from the fact the the rows are i.i.d. and thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}.

We now upper bound Pcol,2. For any zk̂ define

T (zk̂) ≜ {xn ∈ Xn : xn ∈ A(n)
ϵ (X), xn contains zk̂.}. (398)

Observe that for any zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂), we have zk̂ ∈ A

(k̂)
ϵ (X). Furthermore, for a given

deletion pattern with n − k̂ = Θ(n) deletions, WLOG (k̂ + 1, . . . , n), the ϵ-typicality of xn =

(x1, . . . , xn) and zk̂ = (x1, . . . , xk̂) with respect to pX implies the ϵ̃-typicality of (xk̂+1, . . . , xn),

where ϵ̃ = 2−δ−ϵ
δ+ϵ

ϵ. Therefore for any zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂), taking the union bound over all

possible deletion patterns with n− k̂ deletions, the cardinality of T (zk̂) can be upper bounded

as

|T (zk̂)| ≤
(
n

k̂

)
|A(n−k̂)

ϵ̃ (X)| (399)

≤ 2nHb(
k̂
n
)|A(n−k̂)

ϵ̃ (X)| (400)

≤ 2nHb(
k̂
n
)2(n−k̂)(H(X)+ϵ̃) (401)

= 2
n
[
Hb(

k̂
n
)+(1− k̂

n
)(H(X)+ϵ̃)

]
(402)

Furthermore, for any xn ∈ T (zk̂), since T (zk̂) ⊆ A
(n)
ϵ (X), we have

pXn(xn) ≤ 2−n(H(X)−ϵ) (403)

and since the rows Xn
i of X are i.i.d., we have

Pr(Xn
2 ∈ T (zk̂)|Xn

1 ∈ T (zk̂)) = Pr(Xn
2 ∈ T (zk̂)). (404)
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Finally, we note that

|Aϵ(X
k̂|Y k

t , Ŝ
k̂)| ≤ 2k̂(H(X|Y Ŝ ,Ŝ)+ϵ) (405)

and

H(X|Y Ŝ, Ŝ) =
smax∑
s=1

pŜ(s)H(X|Y Ŝ, Ŝ = s) (406)

=
1

1− δ

smax∑
s=1

pS(s)H(X|Y Ŝ, Ŝ = s) (407)

=
1

1− δ

[
smax∑
s=0

pS(s)H(X|Y Ŝ, Ŝ = s)− δH(X|Y S, S = 0)

]
(408)

=
1

1− δ
[
H(X|Y S, S)− δH(X)

]
(409)

=
1

1− δ
[
(1− δ)H(X)− I(X;Y S, S)

]
(410)

= H(X)− I(X;Y S, S)

1− δ
(411)

Thus, we get

|Aϵ(X
k̂|Y k

t , Ŝ
k̂)| ≤ 2

k̂

[
H(X)− I(X;Y S,S)

1−δ
+ϵ

]
. (412)

Combining (402)-(412), we can upper bound Pcol,2 as

Pcol,2 ≤
∑

zk̂∈Aϵ(X k̂|Y k
t ,Ŝk̂)

Pr(Xn
2 ∈ T (zk̂)) (413)

=
∑

zk̂∈Aϵ(X k̂|Y k
t ,Ŝk̂)

∑
xn∈T (zk̂)

pXn(xn) (414)

≤
∑

zk̂∈Aϵ(X k̂|Y k
t ,Ŝk̂)

∑
xn∈T (zk̂)

2−n(H(X)−ϵ) (415)

=
∑

zk̂∈Aϵ(X k̂|Y k
t ,Ŝk̂)

|T (zk̂)|2−n(H(X)−ϵ) (416)

≤
∑

zk̂∈Aϵ(X k̂|Y k
t ,Ŝk̂)

2−n(H(X)−ϵ)2
n
[
Hb(

k̂
n
)+(1− k̂

n
)(H(X)+ϵ̃)

]
(417)

= |Aϵ(X
k̂|Y k

t , Ŝ
k̂)|2−

[
k̂H(X)−nϵ−Hb(

k̂
n
)−(n−k̂)ϵ̃

]
(418)
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≤ 2
k̂

[
H(X)− I(X;Y S,S)

1−δ
+ϵ

]
2
−
[
k̂H(X)−nϵ−nHb(

k̂
n
)−(n−k̂)ϵ̃

]
(419)

= 2−n[ 1−δ−ϵ
1−δ

I(X;Y S ,S)−Hb(δ+ϵ)−(δ+ϵ)(ϵ+ϵ̃)] (420)

= 2−n[ 1−δ−ϵ
1−δ

I(X;Y S ,S)−Hb(δ+ϵ)−2ϵ] (421)

Thus, we have the following upper bound on the error probability

Pe ≤ 2ϵ+ 2nR2−n[ 1−δ−ϵ
1−δ

I(X;Y S ,S)−Hb(δ+ϵ)−2ϵ] + κn + ρn (422)

By LLN, we have κn → 0 and from Lemma 2, we have ρn → 0 as n → ∞. Hence, we can

argue that any database growth rate R satisfying

R < I(X;Y S, S)−Hb(δ) (423)

is achievable by taking ϵ small enough.

Now, we investigate repetition distributions with δ ≤ 1 − 1
|X| . Recall from Appendix D the

counting function F (n, k̂, |X|) denoting the number of |X|-ary sequences of length n, which

contain a fixed |X|-ary sequence of length k̂ as a subsequence. From [57], [65], we have

F (n, k̂, |X|) ≤ n2
n
[
Hb

(
k̂
n

)
+(1− k̂

n
) log(|X|−1))

]
. (424)

Furthermore, disregarding the typicality constraint, we can trivially bound the cardinality of

T (zk̂) as

|T (zk̂)| ≤ |{xn ∈ Xn : xn contains zk̂}| (425)

≤ F (n, k̂, |X|) (426)

≤ n2
n
[
Hb

(
k̂
n

)
+(1− k̂

n
log(|X|−1))

]
(427)

Plugging (427) into (416) and following the same steps, one can show that any rate R satisfying

R <
[
I(X;Y S, S) + δ(H(X)− log(|X| − 1))−Hb(δ)

]+
(428)

is achievable. Simply taking the maximum of the two proven achievable rates when δ ≤ 1− 1/|X|

yields the desired achievability result. This concludes the proof.
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APPENDIX I

PROOF OF LEMMA 5

For brevity, we let µn denote Pr(∃i, j ∈ [n], i ̸= j,H
(1)
i = H

(1)
j ). Notice that since the entries

of X are i.i.d., H(1)
i are i.i.d. Multinomial(mn, pX) random variables. Then,

µn ≤ n2 Pr(H
(1)
1 = H

(1)
2 ) (429)

= n2
∑
h|X|

Pr(H
(1)
1 = h|X|)2 (430)

where the sum is over all vectors of length |X|, summing up to mn. Let mi ≜ h(i), ∀i ∈ X.

Then,

Pr(H
(1)
1 = h|X|) =

(
mn

m1,m2, . . . ,m|X|

) |X|∏
i=1

pX(i)
mi (431)

Hence, we have

µn ≤ n2
∑

m1+···+m|X|=mn

(
mn

m1,m2, . . . ,m|X|

)2 |X|∏
i=1

pX(i)
2mi (432)

where
(

mn

m1,m2,...,m|X|

)
is the multinomial coefficient corresponding to the |X|-tuple (m1, . . . ,m|X|)

and the summation is over all possible non-negative indices m1, . . . ,m|X| which add up to mn.

From [49, Theorem 11.1.2], we have

|X|∏
i=1

pX(i)
2mi = 2−2mn(H(p̃)+D(p̃∥pX)) (433)

where p̃ is the type corresponding to |X|-tuple (m1, . . . ,m|X|):

p̃ =

(
m1

mn

, . . . ,
m|X|

mn

)
. (434)

From Stirling’s approximation [50, Chapter 3.2], we get(
mn

m1,m2, . . . ,m|X|

)2

≤ e2

(2π)|X|
m1−|X|

n Π−1
p̃ 22mnH(p̃) (435)

where Πp̃ =
∏|X|

i=1 p̃(i).
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Combining (432)-(435), we get

µn ≤
e2

(2π)|X|
n2m1−|X|

n

∑
p̃

Π−1
p̃ 2−2mnDKL(p̃∥pX) (436)

Let

T̃ =
∑
p̃

Π−1
p̃ 2−2mnDKL(p̃∥pX) = T̃1 + T̃2 (437)

where

T̃1 =
∑

p̃:DKL(p̃∥pX)>
ϵ2n

2 loge 2

Π−1
p̃ 2−2mnDKL(p̃∥pX) (438)

T̃2 =
∑

p̃:DKL(p̃∥pX)≤ ϵ2n
2 loge 2

Π−1
p̃ 2−2mnDKL(p̃∥pX), (439)

ϵn, which is described below in more detail, is a small positive number decaying with n.

First, we look at T̃2. From Pinsker’s inequality [49, Lemma 11.6.1], we have

DKL(p̃∥pX) ≤
ϵ2n

2 loge 2
⇒ V(p̃, pX) ≤ ϵn (440)

where V denotes the (unnormalized) total variation distance. Therefore∣∣∣∣{p̃ : DKL(p̃∥pX) ≤
ϵ2n

2 loge 2
}
∣∣∣∣ ≤ |{p̃ : V(p̃, pX) ≤ ϵn}| (441)

= O(m|X|−1
n ϵ|X|−1

n ) (442)

where the last equality follows from the fact in a type we have |X|−1 degrees of freedom, since

the sum of the |X|-tuple (m1, . . . ,m|X|) is fixed. Furthermore, when V(p̃, pX) ≤ ϵn, we have

Πp̃ ≥
|X|∏
i=1

(pX(i)− ϵn) ≥ ΠpX − ϵn
|X|∑
i=1

∏
j ̸=i

pX(j) (443)

Hence

Π−1
p̃ ≤

1

ΠpX − ϵn
|X|∑
i=1

∏
j ̸=i

pX(j)

(444)
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and

T̃2 ≤
1

ΠpX − ϵn
|X|∑
i=1

∏
j ̸=i

pX(j)

O(m|X|−1
n ϵ|X|−1

n ) (445)

= O(m|X|−1
n ϵ|X|−1

n ) (446)

for small ϵn.

Now, we look at T̃1. Note that since mi ∈ Z+, we have Πp̃ ≤ m
|X|
n , suggesting the multiplicative

term in the summation in (438) is polynomial with mn. If mi = 0 we can simply discard it and

return to Stirling’s approximation with the reduced number of categories. Furthermore, from [49,

Theorem 11.1.1], we have∣∣∣∣{p̃ : DKL(p̃∥pX) >
ϵ2n

2 loge 2
}
∣∣∣∣ ≤ |{p̃}| (447)

≤ (mn + 1)|X| (448)

suggesting the number of terms which we take the summation over in (438) is polynomial with

mn as well. Therefore, as long as mnϵ
2
n →∞, T̃1 has a polynomial number of elements that

decay exponentially with mn. Thus

T̃1 → 0 as n→∞. (449)

Define

Ui = e2(2π)−|X|m1−|X|
n T̃i, i = 1, 2 (450)

and choose ϵn = m
− 1

2
n Vn for some Vn satisfying Vn = ω(1) and Vn = o(m

1/2
n ). Thus, U1 vanishes

exponentially fast since mnϵ
2
n = V 2

n →∞ and

U2 = O(ϵ|X|−1
n ) = O(m(1−|X|)/2

n V (|X|−1)
n ). (451)

Combining (449)-(451), we have

U = U1 + U2 = O(m(1−|X|)/2
n V (|X|−1)

n ) (452)
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and we get

µn ≤ n2O(m(1−|X|)/2
n V (|X|−1)

n ) (453)

By the assumption m = ω(n
4

|X|−1 ), we have mn = n
4

|X|−1Zn for some Zn satisfying lim
n→∞

Zn =∞.

Now, taking Vn = o(Z
1/2
n ) (e.g. Vn = Z

1/3
n ), we get

µn ≤ O(n2n−2Z(1−|X|)/2
n V (|X|−1)

n ) = o(1) (454)

Thus mn = ω(n
4

|X|−1 ) is enough to have µn → 0 as n→∞.

APPENDIX J

PROOF OF PROPOSITION 4

For brevity, we let µn denote Pr(∃i, j ∈ [n], i ̸= j,H
(1)
i = H

(1)
j ). Then,

µn = n(n− 1) Pr(H
(1)
1 = H

(1)
2 ) (455)

= n(n− 1)
∑
h|X|

Pr(H
(1)
1 = h|X|)2 (456)

= n(n− 1)
∑

m1+···+m|X|=mn

(
mn

m1, . . . ,m|X|

)2

|X|−2mn (457)

= n(n− 1)|X|−2mn
∑

m1+···+m|X|=mn

(
mn

m1, . . . ,m|X|

)2

(458)

= n(n− 1)|X||X|/2(4πmn)
(1−|X|)/2(1 + omn(1))(1− on(1)) (459)

= n2m
1−|X|

2
n (4π)(1−|X|)/2|X||X|/2(1 + omn(1))(1− on(1)) (460)

where (459) follows from [67, Theorem 4].
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