
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Meta-Embedding Generation for Unsupervised
Protein Models

Tolga Dimlioglu
New York University
Brooklyn, NY 11201
td2249@nyu.edu

Serhat Bakirtas
New York University
Brooklyn, NY 11201
sb7082@nyu.edu

Brian McMinn
New York University
Brooklyn, NY 11201
bwm7543@nyu.edu

1 Introduction
The success of traditional supervised learning models for classification tasks relies heavily on fea-
ture extraction methods. This is abundantly clear in recent literature on protein modeling, wherein
features are extracted either by computationally complex pre-processing of a protein’s composite
amino-acid sequences (e.g. BLAST [1]) or by cumbersome, experimental verification of the fea-
tures and labels (e.g. Swiss-Prot [2]). In the past decade, with the exponential growth of datasets
containing unlabeled amino acid sequences [3], these computationally complex and manual meth-
ods are no longer feasible. In turn, there has been an uptick in research on unsupervised learning
of protein representations, inspired by algorithms in the Natural Language Processing (NLP) do-
main. Consequently, several unsupervised models [4–7], trained on various protein datasets such as
Uniref50 [4] and Pfam [8], have emerged. As the corresponding potentially-universal protein em-
beddings are pretrained with different models and/or datasets, their evaluation has become a topic
of interest. In [7], Rao et al. listed a set of downstream tasks and demonstrated that there was
not a single embedding which out-performed all others across all of these tasks, implying that each
embedding may have captured complementary biological features of the proteins. Our experiments
so far have focused on the remote homology classification task, one of the five tasks put forward by
Rao et al. in [7], to standardize the evaluation of protein embeddings.

2 Task, Dataset and Embeddings

2.1 Remote Homology Classification Task

A pair of proteins is called homologous if they share a common evolutionary ancestor, which often
implies a certain level of similarity in biochemical structure and functionality. Therefore grouping
homologous proteins into homology classes becomes an important task since homology classifi-
cation is directly related to practical problems such as antibiotic-resistant gene detection [9] and
enzyme classification [10]. In our setting, the remote homology problem is formalized as a low-
similarity sequence classification problem, where a protein, being an amino acid sequence, is as-
signed to one of the 1195 protein fold classes. These classes map to 3D protein folds which are
essential to the function of the protein.

2.2 Dataset

In our dataset (which we obtain from from [11]), each protein is represented by a sequence of amino
acids and assigned to one of the 1195 remote homology classes, depending on its fold structure,
according to Structural Classification of Proteins (SCOP) [12]. The dataset is split into a training set
of 12312 proteins, a validation set of 736 proteins and three test sets consisting of 1272, 1254 and
718 proteins. These test sets are called family-level, superfamily-level, and fold-level, respectively.
The three test sets are chosen in the following fashion: All of the superfamilies present in the fold-
level test set are absent in the training set. Similarly, all of the families present in the superfamily-
level test set are absent in the training set. Finally, there are family-level overlaps between the
training and the family-level test sets. Therefore as we move from the family-level to fold-level test
sets, the classification task becomes harder. This allows us to use the fold-level test set to investigate
a model’s ability to generalize to unseen superfamily and family distributions for any given fold.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2.3 Embeddings

We make use of three pretrained embedding models, namely the Elmo [6]-based embedding, as
described in [13], Unirep [5] and the Transformer-based embedding given in [7]. For the sake
of brevity, throughout this work we will call these embeddings Elmo, Unirep and Transformer,
respectively. All three of these embedding models are pretrained over tens of millions of proteins
and we apply the pretrained models to our dataset to generate the corresponding embeddings. For a
given protein, each model generates multiple embeddings, one for each amino acid (residue) in the
said protein. In other words, after applying each of these pretrained models, a protein is represented
by a matrix, each row corresponding to the embedding of a single residue. As in [13], we obtain a
single vector representation for each protein by taking an average over the residual embeddings.

2.3.1 Elmo Model

The Embedding from Language Models (Elmo) model from [13] was one of our three chosen
embedding models. It consists of a character-level Convolutional Neural Network (CNN) which
is followed by two layers of bidirectional Long Short-Term Memory (LSTM) architectures. While
the CNN embeds each amino acid into a latent space, the LSTMs use that embedding to model the
context of the surrounding residues (amino acids). The model is pretrained with approximately 31
million unlabeled proteins taken from the Pfam [8] protein database, and outputs protein embeddings
of dimension d1 = 1024.

2.3.2 Unirep Model

The Unified Representation (Unirep) model, presented in [5], is an mLSTM with 1900 hidden
units. The model is pretrained with approximately 24 million unlabeled proteins taken from the
UniRef50 [4] protein database, using next residue prediction. The model outputs protein embed-
dings of dimension d2 = 1900.

2.3.3 Transformer Model

As presented by [7], the Transformer model we use has 12 layers with 512 hidden units and 8
attention heads. Similar to Elmo, the model is pretrained with approximately 31 million unlabeled
proteins taken from the Pfam [8] protein database, and outputs protein embeddings of dimension
d3 = 768.

3 Ensemble Methods
3.1 Concatenation (CONCAT)

As proposed in [14], the concatenation method refers to a simple concatenation of the source embed-
dings after the l2-normalization of each embedding. Given r source embeddings with the respective
dimensions d1, . . . , dr, this method yields a meta-embedding with dCONCAT =

∑r
j=1 dj dimensions.

As seen in Section 5, this simple method boosts the accuracy as it increases the Euclidian distance
in the new representation space at the expense of increased dimensionality.

3.2 Averaging (AVG)

Another simple ensemble method, proposed in [15], is taking the average of the source vectors, after
l2 normalization, in order to generate the meta-embedding. As described in [15], in the presence
of dimension mismatch between the source embeddings, the embedding vectors with the lower
dimensions are zero padded from the end.

As explained in our midterm paper, we investigated the empirical distribution between different
protein embedding pairs and argued that since θ follows a normal distribution around µ = π

2 , AVG
approximates CONCAT without suffering from the increased dimensionality.

3.3 Interpolated Average

While taking averages over the source embeddings with dimensions d1, . . . , dr, interpolation arises
as a natural alternative to zero-padding. In this work, we applied a simple linear interpolation to the
“shorter” embeddings to match the dimensionality dAVG = maxi∈[r] di, before averaging.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3.4 SVD-based Meta-Embedding

Although the embeddings capture complementary features and each embedding can potentially con-
tribute to the generation of the meta-embedding, the potential performance loss due to increased
dimensionality presents a challenge. In our prior work, the concatenation of all three embed-
dings (E+U+T) underperforms the concatenation of the Elmo and Transformer embeddings (E+T)
in two of the three test datasets. To break the curse of dimensionality, we use the SVD-based meta-
embedding generation method proposed in [14]. We first concatenate all three embeddings. Here
given training dataset Etraining

ntr×d̃
for a given source embedding with dimension d̃ < ntr, we first

take the truncated SVD decomposition Etraining

ntr×d̃
= Utraining

ntr×d̃
Σtraining

d̃×d̃
(Vtraining

d̃×d̃
)T . Then, the

SVD-based meta-embedding is given by the first d < d̃ columns of Utraining

ntr×d̃
. Here the dimension

d of the meta-embedding is a hyperparameter.

After obtaining the training meta-embedding, we generate the test meta-
embedding given the test dataset Etest

ntest×d̃
for the source embedding as follows

Utest
ntest×d̃

= Etest
ntest×d̃

Vtraining

d̃×d̃
(Σtraining

d̃×d̃
)−1 where we use the first d columns of Utest

ntest×d̃

as the meta-embedding for the test dataset.

We stress that the performance of this method strongly depends on the datasets having correlated
features. Correlated features allow compression without a considerable loss. Indeed, when we
compute the correlation coefficients among the features and the corresponding p-values, we observe
a high correlation among the features within each embedding. On average, a feature is found to be
strongly-correlated with 3388 other features, with a standard deviation of 87. Thus, as can be seen in
Table 2 and Table 3, SVD-based meta-embeddings perform well even for modest dimensionalities
due to the aforementioned high correlation. In this project we experimented with d = 1000 :
250 : 3500, where d = 1000 is the approximate median dimension of the source embeddings and
d = 3500 is the approximate dimension of concatenated meta-embedding.

3.5 1-to-N

Proposed in [14], 1-to-N is a single learning-based ensemble method. The 1-to-N method is based
on the assumption that individual embeddings are linear projections of a single meta-embedding of
dimension d, into different dimensions. Formally, given training datasets for source embeddings
E

(i)
n×di

, i = 1, 2, 3, we learn the projection matrices P(i)
di×d and the meta-embedding Wn×d such

that E(i)
n×di

= Wn×d(P
(i)

di×d)
T . Thus, we train a simple network with the following regularized

loss function

J =
∑
i

∥E(i)
n×di

−Wn×d(P
(i)

di×d)
T ∥22 + λ

∑
i

∥P(i)
di×d∥2F (1)

Here the regularization parameter λ is a hyperparameter. However due to limited time and compu-
tational power, throughout our experiments we stuck with λ = 1, based on initial observations. For
each d, we trained the network for 1000 “useful” epochs. Since the loss function is strictly convex,
we adapted the following schedule: If the loss J (t+1) does not improve upon the loss J (t), we reran
the t + 1st epoch with a reduced learning rate. After training, the test datasets are generated by
applying projections P(i)

di×d to the source embeddings.

Similar to SVD, we experimented with d = 1000 : 250 : 3500. We observed that unlike SVD,
which yields its best performance for small values of d, 1-to-N performs best for large d.

3.6 Dynamic Meta Embeddings

In this meta-embedding scheme, the supervised learning algorithm has access to several different
embeddings for the same word and the model learns to prefer which embedding is more important
for a certain word by learning the weights for them. This idea is proposed and implemented in
[16]. First, all the available embeddings are mapped to a common d dimensional space with a
learnable linear function. Then, the projected embeddings are combined by taking weighted sum
using the weights obtained from attention mechanism. The authors also proposed the contextualized
version of the same method. As for the encoder, they used Bi-directional LSTM with Max Pooling

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(BiLSTM-Max) that computes two sets of hidden states from left to right and right to left [16].
We integrated our protein dataset with 3 different embeddings, namely Transformer, Unirep and
Elmo, and attempted to train our model with the proposed method using their implementation. Even
though authors achieved state-of-the-art performance in Natural Language Inference and Sentiment
Analysis tasks [16], we observed that the training was not successful in our case. In our experiments,
training takes much more time than theirs and even the training accuracy barely reaches to 80%.

We think that the main problem lies in the nature of the datasets and tasks. We inspected the datasets
and embeddings used in the original experiments. First, their embeddings (GloVE, word2vec) are
of length 300 whereas our embeddings have dimensions 768, 1024 and 1900. Second, their model
inputs consist of few sentences and small number of words. Conversely the shortest protein in our
set has 17 residues whereas longer ones may contain hundreds. Note that we used each protein as a
body of text and each protein residue is treated as a word. Another major difference is in the number
of output classes. The results in the paper are obtained on the datasets with 3 to 5 classes while ours
have 1195 different classes. All in all, we did not achieve promising results with this approach in
our task and we conclude that this approach might not be applicable to protein embeddings at all.

4 Experiment Settings
In this section, we provide details about the models that we have used and the settings of our exper-
iments. The code for our experiments can be found in our Github repository.

4.1 Base Models

For the MLP, we have picked a model with 2 hidden layers and both of the layers have 214 = 16384
neurons. It is noteworthy that the layers contain a large number of neurons since there are many
features that the model must learn, necessitating such a large capacity. Our initial experiments with
smaller hidden layer sizes showed that, after convergence, the model does not achieve an accuracy
score close to 100% even on the training set. The input size depends on the embedding scheme and
the output size is 1195. The hidden layers are followed by ReLU activation functions and we have
added a dropout layer after the first hidden layer. For all experiments, we initialized the models from
the same seed number.

For the logistic regression, we set the maximum number of iterations to 5000, meaning the classifier
stops training after 5000 iterations regardless of the convergence. For all experiments, we used the
same random state for the logistic regression.

4.2 Attention Based Models

We have also implemented 2 different attention based models which are inspired from classical
attention mechanism [17] and the self-attention [18].

4.2.1 Classical Attention Based Model

In this model, we tried to imitate the role of the classical attention mechanism in each task. In the
machine translation task, attention mechanism plays important role. It is used to form a context vec-
tor by calculating the weighted average of the encoder hidden states based on the similarity score of
each of them with the current decoder input. Note that we do not have sequential data, since protein
embeddings are obtained by averaging along their residue axes. As a result, we will be creating our
hidden states with sequential linear layers. The illustration of this architecture is provided in the
following figure.
As seen in Figure 1, input embedding of size B × E, where B is the batch size and E is the em-

bedding dimension, is first mapped to M dimensional space with a linear layer followed by a ReLU
activation. This creates the first nonlinear representation that is obtained by the weighted combi-
nation from the original embedding. As we add more layers, with linear weights of size M × M
followed by ReLU activation functions, we get higher level representations of the same embedding
by extracting different and deeper relations from the original embedding. This yields a learnable
attention weights denoted with WA

M×1. By carrying out matrix multiplication with these weights
and the representations, we obtain similarity score with each of the representations. After normaliz-
ing the sum of similarity scores by applying softmax function, we get the refined context by taking
weighted average among the representations as is the case in the classical attention. Finally, this
context representation is forwarded to an MLP classifier that has 2 hidden layers, each of which has

4

https://github.com/tolgadimli/ECE7123-Project


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 1: Our model architecture inspired from classical attention mechanism

Figure 2: Modified transformer architecture with self-attention

4096 neurons followed by ReLU activation. For the hyperparameters, we used 32 representations
and we varied M from 1000 to 3500 with a step size of 250.

4.2.2 Transformer Based Model

We have implemented a transformer-based model from scratch. For inputting this model, we treated
every feature in the protein embedding as a word embedding with size 1, in other words, a protein
embedding with dimension E is treated as a sentence with E words. We have implemented the
encoder exactly as it is in [18]. As explained in the paper, the motivation behind using self-attention
in the encoder is to extract the importance map between the features [18]. For the decoder, we
dropped the self-attention part since we will be using the same input embedding that is used in
the encoder. In the decoder’s attention part, we are using the Key and Query obtained from the
encoder and the Value is the input embedding itself. In this way, we are imitating the conventional
encoder-decoder mechanism by using the importance relations obtained in the encoder and using
the original value of the embedding. Aside from these, we have two more significant difference
from the original architecture. First, we do not use positional encodings since there is no sequential
nature within the features of the protein embeddings. Second, since, again, the protien features are
independent of sequential order, we incorporate all the relations within the embedding regardless of
their order.

For the hyperparameter selection, we needed to stick to h = 1 and N = 1 in [18] even though we
used a GPU with 11GB of VRAM. This is mainly because the model size increases drastically when
the the input text, or the embedding dimension size in our case, increases. Hence, we were only able
to experiment with an input embedding size of at most 1800. We were only able to do this with a
batch size of 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

MLP Logistic Regression
Embeddding

Method
Combination Fold Superfamily Family Fold Superfamily Family

Individual
Embeddings

E 23.96 43.62 93.16 24.37 44.02 93.32
U 21.45 33.65 84.28 22.42 33.49 86.16
T 21.17 39.63 90.80 23.12 39.00 90.88

Concatenation

E + U 23.68 41.71 92.30 25.63 43.46 93.47
E + T 25.07 44.90 94.65 26.60 46.73 95.28
U + T 22.98 40.91 91.67 26.04 42.50 93.08

E + U + T 25.07 44.74 93.95 27.30 46.57 95.44

Padded
Average

E + U 24.09 42.11 92.06 25.21 43.86 93.40
E + T 24.79 44.50 94.73 26.32 45.93 94.73
U + T 23.40 40.11 91.82 24.65 42.19 92.85

E + U + T 25.35 43.38 93.79 27.43 46.17 94.81

Interpolated
Average

E + U 24.23 42.82 92.14 24.79 43.94 93.39
E + T 24.79 44.82 94.26 27.02 45.22 94.89
U + T 22.14 42.03 92.53 24.37 42.19 93.55

E + U + T 25.07 45.53 94.18 26.18 45.93 94.97

Table 1: Results obtained with MLP and Logistic Regression Models

4.3 Data Processing

Let N be the number of embeddings or protein samples of a given protein embedding set S. Since
different proteins have different numbers of residues – because they can vary in length – each protein
embedding has a different number of row dimensions. Let L be the embedding size, so each of the
samples Si in S for i = 1 : N is of size Ri × L where Ri is the number of residues for the ith

protein. For MLP and Logistic Regression Models, we take mean of each protein embedding with
respect to its residues so that its size becomes 1× L or simply L. After processing the embeddings
this way, the result is a training set of size N × L that will be used for training and inference.

4.4 Training

We have trained the MLP and Classical Attention based model for 100 epochs using momentum
and Nesterov accelerated SGD and weight penalties of 1e − 5 and 1e − 4. This showed better
performance compared to AdaGrad and Adam optimizers in our tests. The initial learning rate is
1e− 4 with a 10-fold learning rate drop applied every 30 epochs.

We trained the Transformer based model for 60 epoch using the Adam optimizer initial learning rate
of 1e−4. Then, we applied a 10-fold learning rate drop every 20 epochs. We also used the following
Adam optimizer parameters: β1 = 0.99, β2 = 0.98 and ϵ = 1e− 9 similar to [18]. Also, we added
a weight penalty of 1e− 5.

5 Results
In this section, we provide the results obtained with different embedding methods and different
classifiers. In table 1, we refer to embeddings obtained with Elmo, Unirep and Transformer models
as E, U and T respectively. In tables 2, 3, first column corresponds to the dimension that is obtained
with SVD and 1-to-N methods. In table 4, for classical attention model, dimension represents the
value of M in figure 1. As shown in the midterm report, incorporation of the residue information
with the recurrent models underperform compared to our other classifiers. Hence, we decided to
stop experimenting with them.

We observed that, among all the ensembling methods, SVD proved to be the best. Without loss
of information SVD easily compresses the dimensionality. This result is also anticipated since we

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

1 to N SVD
Dimension Fold Superfamily Family Fold Superfamily Family

1000 23.96 44.02 93.00 27.44 48.64 96.07
1250 24.51 42.58 92.77 27.16 48.41 96.15
1500 24.51 43.14 93.00 28.13 48.09 95.91
1750 24.93 43.06 92.45 27.58 47.37 95.68
2000 24.37 43.86 93.32 27.72 47.05 95.52
2250 23.96 43.78 93.55 26.88 46.97 95.83
2500 23.40 44.10 93.47 25.77 45.77 95.83
2750 24.51 44.02 93.55 25.49 45.69 95.05
3000 23.82 44.26 93.16 25.21 44.74 95.28
3250 23.40 44.26 93.47 24.51 43.30 94.81
3500 23.26 43.30 93.08 24.37 43.86 94.5

Table 2: Results obtained with MLP model on the embeddings obtained with 1-to-N and SVD.

observed that embedding features are highly correlated with each other and this property makes way
for an effective compression. The details are provided in section 3.4. Although the Classical At-
tention based and transformer based models obtained inferior results compared to SVD, transformer
based model outperformed classical attention, which is expected due to the more sophisticated and
successful relation-extracting mechanism of the transformer model.

1 to N SVD
Dimension Fold Superfamily Family Fold Superfamily Family

1000 25.49 45.61 95.05 25.21 48.09 95.52
1250 25.35 45.77 95.05 27.16 48.41 96.15
1500 25.21 45.85 95.05 25.35 48.17 95.99
1750 25.77 45.85 95.05 24.79 48.09 95.99
2000 25.63 46.25 95.60 24.65 47.53 96.07
2250 25.63 46.01 95.68 24.93 47.39 96.23
2500 25.77 46.09 95.68 24.65 46.89 96.23
2750 26.18 46.01 95.91 24.23 47.21 95.83
3000 26.46 46.17 95.91 24.51 46.09 95.99
3250 25.49 46.57 96.15 23.12 46.17 95.36
3500 25.63 46.41 96.07 22.84 45.93 95.20

Table 3: Results obtained with logistic regression on the embeddings obtained with 1-to-N and SVD.

6 Information-Theoretic Interpretation of the Results
As can be seen from Table 1, when we pairwise ensemble the embeddings, we observe that the
Elmo-Transformer (E+T) pair outperforms the Elmo-Unirep (E+U) and Unirep-Transformer (U+T)
embedding pairs. This implies that the embedding pair E+T should capture a higher number of
complementary features, compared to U+T and E+U. Hence, we expect a lower dependence be-
tween E+T, compared to U+T and E+U. To test this hypothesis, we utilize Mutual Information as a
metric of dependence. Mutual Information I(X;Y ) measures the dependence between two random
variables X and Y drawn from a joint distribution with PDF f(X,Y ), where

I(X;Y ) =

∫
f(x, y) log2

f(x, y)

f(x)f(y)
dxdy (2)

and a higher dependence means higher mutual information [19].

We note that the computation of I(X;Y ) requires the availability of the joint distribution f(X,Y ).
To that end, after experimenting with the embeddings, we observed that the features and fea-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Classical Attention Model Transformer Based Model
M Fold Superfamily Family Method Fold Superfamily Family

1000 21.87 42.66 92.61 E 24.79 40.83 91.43
1250 20.89 42.66 92.85 T 23.96 38.84 89.86
1500 21.31 43.46 92.85 E + T Inter. Avg. 26.18 43.22 93.71
1750 21.59 43.06 92.77 E + T Pad. Avg. 26.18 43.46 94.34
2000 22.56 42.19 92.92 E + T Concat. 25.63 43.62 94.34
2250 22.42 43.46 92.53 1 to N - 1000 25.77 42.11 91.75
2500 22.7 42.74 93.08 1 to N - 1250 26.32 41.31 91.9
2750 21.31 41.55 92.85 1 to N - 1500 26.74 41.87 91.98
3000 22.01 42.42 92.77 1 to N - 1750 26.18 41.95 91.75
3250 22.14 42.26 92.69 SVD - 1000 26.04 45.85 95.44
3500 21.17 42.5 93.0 SVD - 1250 22.7 40.83 92.69

SVD - 1000 24.79 45.93 95.68
SVD - 1000 22.98 43.62 94.5

Table 4: Results obtained with Classical Attention and Transformer based models

Embedding Pair E+U E+T U+T
Mutual Information (bits) 406.09 222.77 259.35

Table 5: Mutual information between the embedding pairs, computed over n = 16292 samples.

ture pairs demonstrate approximately-normal and approximately-jointly-normal behaviours, respec-
tively. Thus, we made a joint-normality assumption on the embedding pairs and computed their
mutual information. One can show that under the joint-normality assumption, the mutual informa-
tion between embeddings Emb1 and Emb2 becomes

I(Emb1;Emb2) =
1

2
log2

(
det(Σ1) det(Σ2)

det(Σ1+2)

)
(3)

where Σ1, Σ2 and Σ1+2 denote the covariance matrices of individual embeddings Emb1 and
Emb2 and the covariance matrix of associated with the joint distribution. The computed mutual
information of the embedding pairs are given in Table 5. We see that the E+T pair has the lowest
mutual information, verifying our hypothesis. Furthermore, note that the E+U pair has the maximum
mutual information by a considerable margin. We hypothesize that this is because both Elmo and
Unirep embeddings are pretrained with LSTM varieties and thus they mostly capture overlapping
sets of features. We believe this overlap alongside with the curse of dimensionality is the reason
the pair E+U mostly underperforms when compared with Elmo. Although these hypotheses require
more comprehensive experiments, the preliminary results look promising.

7 Conclusions & Future Work

In this project, via experiments in Remote Homology Classification task, we demonstrated that the
protein embeddings output by Elmo [6], UniRep [20] and Transformer [7] models have complemen-
tary sets of features. Further, this complementarity can be exploited by combining these embeddings
through different ensemble methods. We showed that both traditional and learning-based ensemble
methods yield meta-embeddings which, in turn, outperform individual embeddings.

We also proposed two novel hypotheses regarding the information-theoretic interpretation of the
comparative performances of the embedding pairs. In these hypotheses, we suggested that pairwise
mutual information between the embeddings is closely related to the observed performance boosts
regarding each embedding pair. Beyond this project, as future work, we plan to test these hypotheses
experimentally in different tasks with several word embeddings and larger dataset sizes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

References
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment

search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–410, 1990.
[2] A. Bairoch and B. Boeckmann, “The swiss-prot protein sequence data bank,” Nucleic acids

research, vol. 19, no. Suppl, p. 2247, 1991.
[3] T. U. Consortium, “UniProt: a worldwide hub of protein knowledge,” Nucleic Acids Research,

vol. 47, pp. D506–D515, 11 2018.
[4] B. E. Suzek, Y. Wang, H. Huang, P. B. McGarvey, C. H. Wu, and U. Consortium, “Uniref

clusters: a comprehensive and scalable alternative for improving sequence similarity searches,”
Bioinformatics, vol. 31, no. 6, pp. 926–932, 2015.

[5] E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church, “Unified rational
protein engineering with sequence-only deep representation learning,” bioRxiv, 2019.

[6] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep
contextualized word representations,” arXiv preprint arXiv:1802.05365, 2018.

[7] R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen, J. Canny, P. Abbeel, and Y. Song,
“Evaluating protein transfer learning with tape,” in Advances in Neural Information Processing
Systems, pp. 9689–9701, 2019.

[8] J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. Sonnhammer, S. C.
Tosatto, L. Paladin, S. Raj, L. J. Richardson, et al., “Pfam: The protein families database in
2021,” Nucleic acids research, vol. 49, no. D1, pp. D412–D419, 2021.

[9] L. S. Tavares, C. d. S. F. d. Silva, V. C. Souza, V. L. d. Silva, C. G. Diniz, and M. D. O. Santos,
“Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and
antimicrobial peptides,” Frontiers in microbiology, vol. 4, p. 412, 2013.

[10] A. Ben-Hur and D. Brutlag, “Remote homology detection: a motif based approach,” Bioinfor-
matics, vol. 19, no. suppl 1, pp. i26–i33, 2003.

[11] J. Hou, B. Adhikari, and J. Cheng, “Deepsf: deep convolutional neural network for mapping
protein sequences to folds,” Bioinformatics, vol. 34, no. 8, pp. 1295–1303, 2018.

[12] A. Andreeva, E. Kulesha, J. Gough, and A. G. Murzin, “The SCOP database in 2020: expanded
classification of representative family and superfamily domains of known protein structures,”
Nucleic Acids Research, vol. 48, pp. D376–D382, 11 2019.

[13] A. Villegas-Morcillo, S. Makrodimitris, R. van Ham, A. M. Gomez, V. Sanchez, and M. Rein-
ders, “Unsupervised protein embeddings outperform hand-crafted sequence and structure fea-
tures at predicting molecular function,” bioRxiv, 2020.

[14] W. Yin and H. Schütze, “Learning meta-embeddings by using ensembles of embedding sets,”
arXiv preprint arXiv:1508.04257, 2015.

[15] J. Coates and D. Bollegala, “Frustratingly easy meta-embedding–computing meta-embeddings
by averaging source word embeddings,” arXiv preprint arXiv:1804.05262, 2018.

[16] D. Kiela, C. Wang, and K. Cho, “Context-attentive embeddings for improved sentence repre-
sentations,” CoRR, vol. abs/1804.07983, 2018.

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align
and translate,” arXiv preprint arXiv:1409.0473, 2014.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.

[19] T. M. Cover, Elements of Information Theory. John Wiley & Sons, 2006.
[20] E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church, “Unified rational pro-

tein engineering with sequence-only deep representation learning,” bioRxiv, p. 589333, 2019.

9


	Introduction
	Task, Dataset and Embeddings
	Remote Homology Classification Task
	Dataset
	Embeddings
	Elmo Model
	Unirep Model
	Transformer Model


	Ensemble Methods
	Concatenation (CONCAT)
	Averaging (AVG)
	Interpolated Average
	SVD-based Meta-Embedding
	1-to-N
	Dynamic Meta Embeddings

	Experiment Settings
	Base Models
	Attention Based Models
	Classical Attention Based Model
	Transformer Based Model

	Data Processing
	Training

	Results
	Information-Theoretic Interpretation of the Results
	Conclusions & Future Work

