Database Matching Under Column Deletions

Serhat Bakirtas, Elza Erkip

New York University

ISIT 2021

S. Bakirtas, E. Erkip Database Matching Under Column Deletions ISIT'21

• A boom in data collection.

- A boom in data collection.
- Potentially-sensitive data published or sold after anonymization

- A boom in data collection.
- Potentially-sensitive data published or sold after anonymization
- Risk of privacy leakage

- A boom in data collection.
- Potentially-sensitive data published or sold after anonymization
- Risk of privacy leakage
- Anonymization is not enough on its own!
 - Correlated data \rightarrow De-anonymization!

- A boom in data collection.
- Potentially-sensitive data published or sold after anonymization
- Risk of privacy leakage
- Anonymization is not enough on its own!
 - Correlated data \rightarrow De-anonymization!

We Found Joe Biden's Secret Venmo. Here's Why That's A Privacy Nightmare For Everyone.

The peer-to-peer payments app leaves everyone from ordinary people to the most powerful person in the world exposed.

Ryan Mac BuzzFeed News Reporter

Katie Notopoulos BuzzFeed News Reporter

Ryan Brooks BuzzFeed News Reporter

Logan McDonald BuzzFeed Staff

Motivation: Our Work

• Database Matching

Motivation: Our Work

- Database Matching
- Column deletions
 - Synchronization errors in time-indexed databases.

Previous Work: Practical Attacks on Real Data

- [Sweeney, 2002]
 - Deanonymization of MA hospital discharge database using public voter database (worth \$20!)

Previous Work: Practical Attacks on Real Data

• [Narayanan and Shmatikov, 2008]

• Deanonymization of Netflix movie ratings using IMDB reviews

User	Movie #1	Movie #2	Movie #3	Movie #4	Movie #5		User	Movie #1	Movie #2	Movie #3	Movie #4	Movie #5
	2	5				\backslash	0		4			8
0		2				X,			4			4
2		2				X.	۲		7			8
		4				\land			10			6
0		3				─ →	@		7			9

Netflix Prize Dataset

IMDB Reviews

Previous Work: Practical Attacks on Real Data

• [Naini, et al., 2012]

• User identification from geolocation data

(a) Unlabeled histograms (Day 1)

User	Location								
	Dorm.	Rest.	Lib.						
?	75%	15%	10%						
?	31%	30%	39%						
?	15%	15%	70%						
?	15%	65%	20%						

(b) Labeled histograms (Day 2)

User	Location							
	Dorm.	Rest.	Lib.					
John	33%	33%	34%					
Jill	70%	20%	10%					
Mary	15%	60%	25%					
Mike	15%	20%	65%					

Previous Work: Theoretical Limits

[Shirani, Garg, and Erkip, 2019]

 $\mathcal{C}^{(1)}$

 $\mathcal{C}^{(2)}$

User ID	Attribute Vector						User ID	Attribute Vector				
$\Theta^{(1)}(1)$	$X_{1,1}^{(1)}$	$X_{1,2}^{(1)}$	•	٠	$X_{1,n}^{(1)}$		$\Theta^{(2)}(1)$	$X_{1,1}^{(2)}$	$X_{1,2}^{(2)}$	•	٠	$X_{1,n}^{(2)}$
$\Theta^{(1)}(2)$	$X_{2,1}^{(1)}$	$X_{2,2}^{(1)}$	•	٠	$X_{2,n}^{(1)}$		$\Theta^{(2)}(2)$	$X_{2,1}^{(2)}$	$X_{2,2}^{(2)}$	•	٠	$X_{2,n}^{(2)}$
٠	•	٠	٠	٠	٠		٠	•	•	٠	٠	•
•	•	٠	٠	٠	•		٠	•	•	٠	٠	•
$\Theta^{(1)}(m)$	$X_{m,1}^{(1)}$	$X_{m,2}^{(1)}$	•	•	$X_{m,n}^{(1)}$		$\Theta^{(2)}(m)$	$X_{m,1}^{(2)}$	$X_{m,2}^{(2)}$	•	•	$X_{m,n}^{(2)}$

- Databases as $m_n \times n$ random matrices
 - Matching rows ~ $f_{X^{(1),n},X^{(2),n}}$

Previous Work: Theoretical Limits

[Shirani, Garg, and Erkip, 2019]

 $\mathcal{C}^{(1)}$

 $\mathcal{C}^{(2)}$

User ID	Attribute Vector						User ID	Attribute Vector				
$\Theta^{(1)}(1)$	$X_{1,1}^{(1)}$	$X_{1,2}^{(1)}$	•	٠	$X_{1,n}^{(1)}$		$\Theta^{(2)}(1)$	$X_{1,1}^{(2)}$	$X_{1,2}^{(2)}$	•	٠	$X_{1,n}^{(2)}$
$\Theta^{(1)}(2)$	$X_{2,1}^{(1)}$	$X_{2,2}^{(1)}$	•	٠	$X_{2,n}^{(1)}$		$\Theta^{(2)}(2)$	$X_{2,1}^{(2)}$	$X_{2,2}^{(2)}$	•	٠	$X_{2,n}^{(2)}$
٠	•	٠	٠	٠	٠		٠	•	•	٠	٠	•
•	•	٠	٠	٠	•		٠	•	•	٠	٠	•
$\Theta^{(1)}(m)$	$X_{m,1}^{(1)}$	$X_{m,2}^{(1)}$	•	•	$X_{m,n}^{(1)}$		$\Theta^{(2)}(m)$	$X_{m,1}^{(2)}$	$X_{m,2}^{(2)}$	•	•	$X_{m,n}^{(2)}$

- Databases as $m_n \times n$ random matrices
 - Matching rows ~ $f_{X^{(1),n},X^{(2),n}}$
- Database growth rate: $R = \lim_{n \to \infty} \frac{1}{n} \log m$

Previous Work: Theoretical Limits

[Shirani, Garg, and Erkip, 2019]

 $\mathcal{C}^{(1)}$

 $\mathcal{C}^{(2)}$

User ID	Attribute Vector						User ID	Attribute Vector				
$\Theta^{(1)}(1)$	$X_{1,1}^{(1)}$	$X_{1,2}^{(1)}$	•	٠	$X_{1,n}^{(1)}$		$\Theta^{(2)}(1)$	$X_{1,1}^{(2)}$	$X_{1,2}^{(2)}$	•	٠	$X_{1,n}^{(2)}$
$\Theta^{(1)}(2)$	$X_{2,1}^{(1)}$	$X_{2,2}^{(1)}$	•	٠	$X_{2,n}^{(1)}$		$\Theta^{(2)}(2)$	$X_{2,1}^{(2)}$	$X_{2,2}^{(2)}$	•	٠	$X_{2,n}^{(2)}$
٠	•	٠	٠	٠	٠		٠	•	•	٠	٠	•
•	•	٠	٠	٠	•		٠	•	•	٠	٠	•
$\Theta^{(1)}(m)$	$X_{m,1}^{(1)}$	$X_{m,2}^{(1)}$	•	•	$X_{m,n}^{(1)}$		$\Theta^{(2)}(m)$	$X_{m,1}^{(2)}$	$X_{m,2}^{(2)}$	•	•	$X_{m,n}^{(2)}$

- Databases as $m_n \times n$ random matrices
 - Matching rows ~ $f_{X^{(1),n},X^{(2),n}}$
- Database growth rate: $R = \lim_{n \to \infty} \frac{1}{n} \log m$
- Successful matching: $P_e \rightarrow 0$ as $n \rightarrow \infty$
- Database matching ⇔ Channel decoding

We assume

- O Databases do not have the same number of attributes
 - Random column deletion

We assume

- O Databases do not have the same number of attributes
 - Random column deletion
- 2 The indices of the deleted columns are not known.

We assume

- O Databases do not have the same number of attributes
 - Random column deletion
- 2 The indices of the deleted columns are not known.
- Oblight Deletion pattern is constant across the rows.

• What are the sufficient conditions on the database growth rate for successful de-anonymization?

- What are the sufficient conditions on the database growth rate for successful de-anonymization?
- e How does side information on the deletion locations help?

- What are the sufficient conditions on the database growth rate for successful de-anonymization?
- e How does side information on the deletion locations help?
- So Can we extract this side information from an already-matched batch of rows, *i.e.* seeds?

- What are the sufficient conditions on the database growth rate for successful de-anonymization?
- e How does side information on the deletion locations help?
- So Can we extract this side information from an already-matched batch of rows, *i.e.* seeds?
- How large this batch should be?

• $C^{(1)}$: (m, n, p_X) unlabeled database, *i.i.d.* entries ~ p_X from \mathfrak{X}

C⁽¹⁾: (m, n, p_X) unlabeled database, *i.i.d.* entries ~ p_X from X
Columns deleted in C⁽²⁾ with probability δ (colored columns)

- $C^{(1)}$: (m, n, p_X) unlabeled database, *i.i.d.* entries ~ p_X from \mathfrak{X}
- Columns deleted in $\mathcal{C}^{(2)}$ with probability δ (colored columns)
- Θ: Labeling function

- $C^{(1)}$: (m, n, p_X) unlabeled database, *i.i.d.* entries ~ p_X from \mathfrak{X}
- Columns deleted in $\mathcal{C}^{(2)}$ with probability δ (colored columns)
- Θ: Labeling function
- $(\mathcal{C}^{(2)}, \Theta)$: Column deleted labeled database

- $C^{(1)}$: (m, n, p_X) unlabeled database, *i.i.d.* entries ~ p_X from \mathfrak{X}
- Columns deleted in $\mathcal{C}^{(2)}$ with probability δ (colored columns)
- Θ: Labeling function
- $(\mathcal{C}^{(2)}, \Theta)$: Column deleted labeled database
- Deleted columns detected with probability α (blue column)

• Successful Matching Scheme: A mapping $s : (\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) \to \hat{\Theta}$ satisfying $P(\Theta(I) = \hat{\Theta}(I)) \to 1$ as $n \to \infty$, $I \sim unif \{1, m\}$

- Successful Matching Scheme: A mapping $s : (\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) \to \hat{\Theta}$ satisfying $P(\Theta(I) = \hat{\Theta}(I)) \to 1$ as $n \to \infty$, $I \sim unif \{1, m\}$
- Database Growth Rate: $R = \lim_{n \to \infty} \frac{1}{n} \log_2 m$
 - Relation between #users and #attributes
 - Large $R \rightarrow$ More users per attributes \rightarrow More difficult to match

- Successful Matching Scheme: A mapping $s : (\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) \to \hat{\Theta}$ satisfying $P(\Theta(I) = \hat{\Theta}(I)) \to 1$ as $n \to \infty$, $I \sim unif \{1, m\}$
- Database Growth Rate: $R = \lim_{n \to \infty} \frac{1}{n} \log_2 m$
 - Relation between #users and #attributes
 - Large $R \rightarrow$ More users per attributes \rightarrow More difficult to match
- Achievable Database Growth Rate: Given p_X , δ and α , R is achievable if for $(\mathcal{C}^{(1)}, \mathcal{C}^{(2)})$, there exists a successful matching scheme.

Proposed Matching Scheme

- Discard all the detected deleted columns in $C^{(1)}$.
- 3 Match a row \pmb{Y} from $\mathcal{C}^{(2)}$ with a row \pmb{X} from $\mathcal{C}^{(1)}$ after discarding if
 - **X** is typical with respect to p_X .
 - X contains Y as a subsequence.
 - **X** is the only row of $\mathcal{C}^{(1)}$ satisfying the conditions above.

Given a column deletion probability $\delta < 1 - \frac{1}{|\mathfrak{X}|}$ and a deletion detection probability α , any database growth rate

$$R < \left[(1 - \alpha \delta) \left(H(X) - H_b \left(\frac{1 - \delta}{1 - \alpha \delta} \right) \right) - (1 - \alpha) \delta \log(|\mathfrak{X}| - 1) \right]^+$$

is achievable, where H, H_b and $[.]^+$ denote the entropy, the binary entropy, and the positive part functions respectively.

Given a column deletion probability $\delta < 1 - \frac{1}{|\mathfrak{X}|}$ and a deletion detection probability α , any database growth rate

$$R < \left[(1 - \alpha \delta) \left(H(X) - H_b \left(\frac{1 - \delta}{1 - \alpha \delta} \right) \right) - (1 - \alpha) \delta \log(|\mathfrak{X}| - 1) \right]^+$$

is achievable, where H, H_b and $[.]^+$ denote the entropy, the binary entropy, and the positive part functions respectively.

• Higher $\delta \rightarrow$ Lower achievable rates

Given a column deletion probability $\delta < 1 - \frac{1}{|\mathfrak{X}|}$ and a deletion detection probability α , any database growth rate

$$R < \left[(1 - \alpha \delta) \left(H(X) - H_b \left(\frac{1 - \delta}{1 - \alpha \delta} \right) \right) - (1 - \alpha) \delta \log(|\mathfrak{X}| - 1) \right]^+$$

is achievable, where H, H_b and $[.]^+$ denote the entropy, the binary entropy, and the positive part functions respectively.

- Higher $\delta \rightarrow$ Lower achievable rates
- Higher $\alpha \rightarrow$ Higher achievable rates

Given a column deletion probability $\delta < 1 - \frac{1}{|\mathfrak{X}|}$ and a deletion detection probability α , any database growth rate

$$R < \left[(1 - \alpha \delta) \left(H(X) - H_b \left(\frac{1 - \delta}{1 - \alpha \delta} \right) \right) - (1 - \alpha) \delta \log(|\mathfrak{X}| - 1) \right]^+$$

is achievable, where H, H_b and $[.]^+$ denote the entropy, the binary entropy, and the positive part functions respectively.

- Higher $\delta \rightarrow$ Lower achievable rates
- Higher $\alpha \rightarrow$ Higher achievable rates
- Lower $H(X) \rightarrow$ Lower achievable rates

Achievable Database Growth Rate

 $\textbf{9} \quad \text{Bound } \# \text{potential rows of } \mathcal{C}^{(1)} \text{ containing a given row } \textbf{Y} \text{ of } \\ \mathcal{C}^{(2)} \text{ after discarding detected deleted columns}$

- Bound #potential rows of $C^{(1)}$ containing a given row **Y** of $C^{(2)}$ after discarding detected deleted columns
- 2 Bound the probability of each such row of $\mathcal{C}^{(1)}$
 - Typicality

- Bound #potential rows of C⁽¹⁾ containing a given row Y of C⁽²⁾ after discarding detected deleted columns
- 2 Bound the probability of each such row of $\mathcal{C}^{(1)}$
 - Typicality
- **③** 1 & 2 → Pairwise collision probability between 2 rows.

- Bound #potential rows of C⁽¹⁾ containing a given row Y of C⁽²⁾ after discarding detected deleted columns
- Bound the probability of each such row of C⁽¹⁾
 Typicality
- **③** 1 & 2 → Pairwise collision probability between 2 rows.
- **4** Union bound over $m = 2^{nR}$ rows

Corollary 1: No Deletion Detection

When α = 0, we have

$$R < \left[H(X) - H_b(\delta) - \delta \log(|\mathfrak{X}| - 1)\right]^+$$

which is closely related to the deletion channel achievability result from [Diggavi and Grossglauser, 2006].

Corollary 2: Full Deletion Detection

When $\alpha = 1$, we have

$$R < (1 - \delta)H(X)$$

which is related to the erasure channel capacity.

• Exploiting known deletion locations helps!

- Exploiting known deletion locations helps!
- We've assumed deletion locations are given.

- Exploiting known deletion locations helps!
- We've assumed deletion locations are given.
- Instead, one might have access to a batch $(\mathcal{D}^{(1)}, \mathcal{D}^{(2)})$ of correctly-matched rows, *i.e.* seeds.

- Exploiting known deletion locations helps!
- We've assumed deletion locations are given.
- Instead, one might have access to a batch $(\mathcal{D}^{(1)}, \mathcal{D}^{(2)})$ of correctly-matched rows, *i.e.* seeds.
- Can we exploit this batch and the identicality of the column deletion pattern to detect the deleted columns?

$$\mathcal{D}^{(1)} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix} \qquad \mathcal{D}^{(2)} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

A simple deletion detection $g: \mathfrak{X}^{B \times n} \times \mathfrak{X}^{B \times K} \times [n] \rightarrow \{1, \mathsf{inc}\}$ where

$$g(\mathcal{D}^{(1)}, \mathcal{D}^{(2)}, j) = \begin{cases} 1, & \mathbf{D}_j \text{ is not a column of } \mathcal{D}^{(2)} \text{ and } \mathbf{D}_j \in A_{\epsilon}^{(B)} \\ \text{ inc, } otherwise \end{cases}$$

- $\mathcal{D}^{(1)}$ and $\mathcal{D}^{(2)}$: of sizes $B \times n$ and $B \times K$
- A_ε^(B): ε-typical set associated with p_X with parameter B
 D_j: The jth column of D⁽¹⁾

For example, $g(\mathcal{D}^{(1)}, \mathcal{D}^{(2)}, 3) = 1$

Let $\mathcal{D}^{(1)}, \mathcal{D}^{(2)}$ be a batch of correctly-matched *B* rows of the unlabeled database $\mathcal{C}^{(1)}$, and the corresponding column deleted database $\mathcal{C}^{(2)}$. Then

$$P(g(\mathcal{D}^{(1)},\mathcal{D}^{(2)},j)=1|j\in I_D)\geq 1-\epsilon-n2^{-B(H(X)-\epsilon)}(1-\delta)$$

where I_D is the set of deleted column indices.

Let $\mathcal{D}^{(1)}, \mathcal{D}^{(2)}$ be a batch of correctly-matched *B* rows of the unlabeled database $\mathcal{C}^{(1)}$, and the corresponding column deleted database $\mathcal{C}^{(2)}$. Then

$$P(g(\mathcal{D}^{(1)},\mathcal{D}^{(2)},j)=1|j\in I_D)\geq 1-\epsilon-n2^{-B(H(X)-\epsilon)}(1-\delta)$$

where I_D is the set of deleted column indices.

• Higher $B \rightarrow$ Higher deletion detection probability

Let $\mathcal{D}^{(1)}, \mathcal{D}^{(2)}$ be a batch of correctly-matched *B* rows of the unlabeled database $\mathcal{C}^{(1)}$, and the corresponding column deleted database $\mathcal{C}^{(2)}$. Then

$$P(g(\mathcal{D}^{(1)},\mathcal{D}^{(2)},j)=1|j\in I_D)\geq 1-\epsilon-n2^{-B(H(X)-\epsilon)}(1-\delta)$$

where I_D is the set of deleted column indices.

- Higher $B \rightarrow$ Higher deletion detection probability
- Lower $H(X) \rightarrow$ Lower deletion detection probability

• To guarantee a non-zero deletion detection probability, we need a batch size $B = O(\log n) = O(\log \log m)$, where *m* is the number of users and *n* is the number of attributes.

- To guarantee a non-zero deletion detection probability, we need a batch size B = O(log n) = O(log log m), where m is the number of users and n is the number of attributes.
- $B = \omega(\log n) = \omega(\log \log m)$ guarantees that for large *n*, we have $P(g(\mathcal{D}^{(1)}, \mathcal{D}^{(2)}, j) = 1 | j \in I_D) \ge 1 \epsilon$.

- To guarantee a non-zero deletion detection probability, we need a batch size $B = O(\log n) = O(\log \log m)$, where *m* is the number of users and *n* is the number of attributes.
- $B = \omega(\log n) = \omega(\log \log m)$ guarantees that for large n, we have $P(g(\mathcal{D}^{(1)}, \mathcal{D}^{(2)}, j) = 1 | j \in I_D) \ge 1 \epsilon$.
- **Remark:** Deletion detection from a batch of seeds does not necessarily lead to an *i.i.d.* deletion detection process.

Conclusion

• A matching scheme

Conclusion

- A matching scheme
- Sufficient conditions for database matching under random column deletions with probabilistic deletion detection.

Conclusion

- A matching scheme
- Sufficient conditions for database matching under random column deletions with probabilistic deletion detection.
- Deletion detection increases the achievable database growth rate
 - upto $\times 20$ when δ is large ($\delta \approx 0.4$).

- A matching scheme
- Sufficient conditions for database matching under random column deletions with probabilistic deletion detection.
- Deletion detection increases the achievable database growth rate
 - upto $\times 20$ when δ is large ($\delta \approx 0.4$).
- An algorithm to detect deleted columns from a batch of seeds.

- A matching scheme
- Sufficient conditions for database matching under random column deletions with probabilistic deletion detection.
- Deletion detection increases the achievable database growth rate
 - upto $\times 20$ when δ is large ($\delta \approx 0.4$).
- An algorithm to detect deleted columns from a batch of seeds.
- #seeds = O(log log #users) is enough to guarantee a non-zero deletion detection probability.

- A matching scheme
- Sufficient conditions for database matching under random column deletions with probabilistic deletion detection.
- Deletion detection increases the achievable database growth rate
 - upto $\times 20$ when δ is large ($\delta \approx 0.4$).
- An algorithm to detect deleted columns from a batch of seeds.
- #seeds = O(log log #users) is enough to guarantee a non-zero deletion detection probability.
- Ongoing work: Batchwise matching & Converse results