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Introduction

Motivation
Age of data collection.

Potentially-sensitive data are made available for commercial and research
purposes.

User identities are removed: Anonymization.
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Correlated public data → De-anonymization!
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Introduction

Motivation: Our Work
Anonymized databases containing micro-information shared and published
routinely.
Examples: Movie preferences, financial transactions data, location data, health
records.

This work: De-anonymization of time-indexed data, e.g., financial and location
data

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 2 / 21



Introduction

Motivation: Our Work
Anonymized databases containing micro-information shared and published
routinely.
Examples: Movie preferences, financial transactions data, location data, health
records.
This work: De-anonymization of time-indexed data, e.g., financial and location
data

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 2 / 21



Introduction

Motivation: Loss of Synchronization in Time-Indexed Data

Loss of synchronization in time-indexed data, due to

1 Sampling errors

Random column deletions & replications

2 A privacy-preserving mechanism
Intentional/Adversarial! column deletions
A deletion budget: Privacy - Utility trade-off
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Introduction

Motivation: Adversarial Column Deletions
Some time-instances may offer more information than others.

e.g. Night-time locations reveal more private information.
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Background Practical Attacks

Practical Database De-Anonymization Attacks

[Narayanan and Shmatikov, 2008]
De-anonymization of Netflix Prize Dataset
using IMDB data.

[Sweeney, 2002]
De-anonymization of medical databases using
voter registration data.

[Naini et al., 2012]
User identification from geolocation data.
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Background Database Matching: Other Applications

Database Matching: Other Applications

Computer vision [Galstyan et al., 2021]
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Background Theoretical Works

Previous Works: Information-Theoretical Limits
[Shirani, Garg, and Erkip, ISIT ’19]
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Databases as mn × n random matrices: equal no. of labeled attributes (columns)
Matching rows ∼ fXn,Y n : Noise-only.
Non-matching rows ∼ fXn fY n :

Database growth rate: R = lim
n→∞

1
n logmn

Successful matching: Pe → 0 as n → ∞
Database matching ⇔ Channel decoding
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Background Theoretical Works

Previous Works: Information-Theoretical Limits
Objective: Given (D(1),D(2)), find a successful matching scheme Θ̂

Successful: lim
n→∞

Pr(Θ(I) = Θ̂(I)) = 1 where I ∼ U(1,mn).

Almost all entries must be matched correctly.
In [Cullina et al., 2018], [Dai et al., 2019]: All entries must be matched correctly.

Achievable Database Growth Rate: Rate R is achievable if given (D(1),D(2)) with
growth rate R, there exists a successful matching scheme.

Matching Capacity:

C ≜ sup{R: R is achievable.}

Theorem (Noise-Only Matching Capacity)
In the noise-only setting, the matching capacity is given by C = I(X ;Y ).
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Background Theoretical Works

Previous Works: Information-Theoretical Limits

1 Random Deletions & Replications [Bakirtas & Erkip, ISIT ’21, Asilomar ’22]
Underlying repetition distribution pS over {0, . . . , smax}.

Theorem (Repetition-Only Matching Capacity)
In the repetition-only setting, the matching capacity is equal to the erasure channel
mutual information with erasure probability pS(0).

2 Random Deletions & Replications + Noise [Bakirtas & Erkip, ITW ’22]
Seeds (already-matched row pairs) available.

Theorem (Seeded Matching Capacity with Repetition + Noise)
Given a seed size Λn = Ω(logmn) the matching capacity is C = I(X ;Y S ,S).
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This Work

System Model

D(1): mn × n random matrix with entries Xi ,j
i .i .d .∼ pX .

Database Growth Rate: R = lim
n→∞

1
n logmn

Assumption: R > 0. (n ∼ logmn)
Only interesting regime [Kunisky & Niles-Weed, 2022]

Θn: Uniform permutation of [mn].

Column deletion pattern: Idel = {i1, i2, ..., id} ⊆ [n].
Chosen by an adversary after observing D(1)

δ ≜ d
n : Deletion budget

Identical deletion pattern across rows.
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This Work

System Model: Continued

D
(1) Row Shuffling

Θn

Column
Deletion

Adversary Idel

D
(2)

D(2): Obtained from D(1) by
1 Row shuffling by Θn.
2 Column deletion by Idel.

Delete the jth column if j ∈ Idel.

No noise on the entries.
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This Work

System Model: Continued

Achievable Database Growth Rate: Rate R is achievable if given (D(1),D(2)) with
growth rate R, ∃Θ̂n such that:

Pr(∀Idel = (i1, . . . , inδ) ⊆ [n], Θ̂n(J) = Θn(J))
n→∞−→ 1,

where J ∼ U(1,mn).

Adversarial Matching Capacity:

Cadv(δ) ≜ sup{R: R is achievable with deletion budget δ.}

Goal: Given pX and δ, characterize matching capacity Cadv(δ).
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This Work

This Talk: Objectives

1 What is the adversarial matching capacity?

2 Can we devise matching schemes that achieve this matching capacity?

3 Can adversarial deletion offer better privacy than the random one?
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Main Results Matching Scheme

Proposed Matching Scheme

Exploit the identical deletion pattern across rows.

1 Find a permutation-invariant unique feature of the columns.
2 By matching these features, infer the deletion pattern Idel.
3 Discard the deleted columns from D(1).
4 Perform rowwise exact sequence matching.

We will use column histograms as the permutation-invariant feature.
As long as the column histograms are unique, we can

Label each attribute correctly.
Infer the deletion pattern.
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Main Results Matching Scheme

Histogram-Based Repetition Detection: Example
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Îdel = [ ]2 5

H
(1)

3
1
4
0

1
3
4
0

1
4
3
0

2
4
2
0

0
3
5
0

0
4
3
1

H
(2)

3
1
4
0 0

1
4
3
0

2
4
2

0
4
3
1

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 15 / 21



Main Results Matching Scheme

Matching Scheme

D
(2) Histogram

Construction H
(2)

D
(1) Histogram

Construction H
(1) Îdel
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Main Results Matching Scheme

Asymptotic Uniqueness of The Histograms

Lemma
Let Hi denote the ith column of the histogram matrix H(1). Then,
Pr(∃i , j ∈ [n], i ̸= j ,Hi = Hj) → 0 as n → ∞ if mn = ω

(
n

4
|X|−1

)
.

For R > 0, mn = ω(np) ∀p ∈ N.
⇒ Asymptotically, columns of H(1) are unique.

Since there is no noise, they can be matched with the columns of H(2).

Note:
LLN: Hi ≈ Hj , ∀i , j
Our Result: Hi ≈ Hj , BUT Hi ̸= Hj
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Main Results Adversarial Matching Capacity

Main Result: Adversarial Matching Capacity

Theorem (Adversarial Matching Capacity)
Consider a database distribution pX and an adversary with a δ-deletion budget. Then,
the adversarial matching capacity is

Cadv(δ) =

{
D(δ∥1 − q̂), if δ ≤ 1 − q̂
0, if δ > 1 − q̂

where q̂ ≜ ∑x∈X pX (x)2 and D(.∥.) denotes the KL divergence between two Bernoulli
distributions with given parameters.
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Main Results Adversarial Matching Capacity

Main Result: Adversarial vs. Random Deletion

Adversarial Matching Capacity

Cadv(δ) =

{
D(δ∥1 − q̂), if δ ≤ 1 − q̂
0, if δ > 1 − q̂

Random Matching Capacity [Bakirtas & Erkip, Asilomar ’22]

C random(δ) = (1 − δ)H(X )

Strictly positive!
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Main Results Adversarial Matching Capacity

Adversarial vs. Random Deletion: Example
X ∼ Unif(X), X = [5]. 1 − q̂ = 0.8.
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Conclusion

Database Matching ⇔ Channel Decoding

Histograms help us infer the deletion pattern.

Complete characterization of the adversarial matching capacity.

Adversarial deletions offer better privacy, compared to random deletions.

Ongoing Work: Database matching with adversarial noise, distribution-agnostic
database matching.

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 21 / 21



Conclusion

Conclusion

Database Matching ⇔ Channel Decoding

Histograms help us infer the deletion pattern.

Complete characterization of the adversarial matching capacity.

Adversarial deletions offer better privacy, compared to random deletions.

Ongoing Work: Database matching with adversarial noise, distribution-agnostic
database matching.

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 21 / 21



Conclusion

Conclusion

Database Matching ⇔ Channel Decoding

Histograms help us infer the deletion pattern.

Complete characterization of the adversarial matching capacity.

Adversarial deletions offer better privacy, compared to random deletions.

Ongoing Work: Database matching with adversarial noise, distribution-agnostic
database matching.

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 21 / 21



Conclusion

Conclusion

Database Matching ⇔ Channel Decoding

Histograms help us infer the deletion pattern.

Complete characterization of the adversarial matching capacity.

Adversarial deletions offer better privacy, compared to random deletions.

Ongoing Work: Database matching with adversarial noise, distribution-agnostic
database matching.

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 21 / 21



Conclusion

Conclusion

Database Matching ⇔ Channel Decoding

Histograms help us infer the deletion pattern.

Complete characterization of the adversarial matching capacity.

Adversarial deletions offer better privacy, compared to random deletions.

Ongoing Work: Database matching with adversarial noise, distribution-agnostic
database matching.

S. Bakirtas, E. Erkip Database Matching Under Adversarial Column Deletions ITW 2023 21 / 21



Thank you! Q&A?
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