
Seeded Database Matching Under Noisy Column
Repetitions

Serhat Bakirtas, Elza Erkip

New York University

Information Theory Workshop 2022



Introduction

1 Introduction

2 Background

3 This Work

4 Main Results

5 Conclusion

S. Bakirtas, E. Erkip Seeded Database Matching Under Noisy Column Repetitions ITW 2022 0 / 27



Introduction

Motivation
Age of data collection.

Potentially-sensitive data are made available for commercial and research
purposes.

User identities are removed: Anonymization.
Are anonymized data truly private?
NO!

Correlated public data → De-anonymization!
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Introduction

Motivation: Our Work
Anonymized databases containing micro-information shared and published
routinely.
Examples: Movie preferences, financial transactions data, location data, health
records.

This work: Time-indexed data, e.g., financial and location data
Synchronization errors in time-indexed data: column repetitions
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Background Practical Attacks

Practical Database Matching Attacks

[Narayanan and Shmatikov, 2008]
De-anonymization of Netflix Prize Database
using IMDB data.

[Sweeney, 2002]
De-anonymization of medical databases using
voter registration data.

[Naini et al., 2012]
User identification from geolocation data.
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Background Database Matching: Other Applications

Database Matching: Other Applications

Computer vision [Galstyan et al., 2021]

:$

X1 X2 X3 X4 X5 X6 X7

X]
1 X]

2 X]
3 X]

4 X]
5 X]

6 X]
7 X]

8 X]
9

Biological applications
DNA Sequencing [Blazewicz et al., 2002]
Single-cell data alignment [Chen et al., 2022]
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Background Theoretical Works

Previous Works: Information-Theoretical Limits

[Shirani, Garg, and Erkip, ISIT 2019]

Attribute Vector
D(2)

Attribute Vector
D(1)

mn

1

User ID

Xmn,1 Xmn,n

X1,1 X1,n

YΘ−1(mn),1 YΘ−1(mn),n

YΘ−1(1),1 YΘ−1(1),n

Databases as mn × n random matrices: equal no. of labeled attributes (columns)
Matching rows ∼ fX (1),n,X (2),n

Database growth rate: R = lim
n→∞

1
n logmn

Successful matching: Pe → 0 as n → ∞
Database matching ⇔ Channel decoding
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Background Theoretical Works

Previous Works: Information-Theoretical Limits

Objective: Given (D(1),D(2)), find Θ̂ s.t.:

Pr(Θ(I) = Θ̂(I)) → 1 as n → ∞,

where I ∼ U(1,mn).

Almost all entries must be matched correctly.

In [Cullina et al., 2018], [Dai et al., 2019]: All entries must be matched correctly.

This allows us to
use information-theoretic tools,
work with arbitrary distributions.
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Background Theoretical Works

Previous Works: Information-Theoretical Limits

[Bakirtas and Erkip, ISIT 2021]

Database Matching Under Column Deletions.
Different numbers of attributes.
Attributes are unlabeled.

Sufficient conditions on database matching
Side information on the deletion locations.

Extracting this side information from a batch of correctly-matched rows (seeds).
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Background Theoretical Works

Previous Works: Information-Theoretical Limits

[Bakirtas and Erkip, Asilomar 2022]

Matching of Markov Databases Under Random Column Repetitions.
Different number of attributes (columns).
Attributes are unlabeled.
Markov rows.

Correlation among attributes
Noiseless setting.

Repetition detection is possible without seeds in the noiseless setting.

Complete characterization of the matching capacity in the noiseless setting.
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This Work

This Talk: Seeded Database Matching Under Noisy Column Repetitions
1 The attributes are not labeled.
2 Databases do not have the same number of attributes.

Random column repetitions.

3 The indices of the repeated columns are not known.
4 Repetition pattern is constant across the rows.
5 The retaining entries are noisy.
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This Work

This Talk: Continued

We have access to a batch of correctly-matched rows, i.e., seeds.
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This Work

System Model

D(1): mn × n random matrix with entries Xi ,j
i .i .d .∼ pX .

Θ: uniform permutation of [mn].

Column repetition pattern: random vector Sn = {S1, S2, ...,Sn} with Sj
i .i .d .∼ pS .

supp(pS) = {0, . . . , smax}
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This Work

System Model: Continued

D(1) D(2)Noise
pY |X

Repetition
Sn

Row Shuffling
Θn

D(2): Obtained from D(1) by
1 Row shuffling by Θ.
2 Column deletion/replication by Sn.

Replicate the jth column Sj times if Sj > 0.
Delete the jth column if Sj = 0.

3 i.i.d. noise pY |X on the retained entries.
X and Y are not independent: pY |X ̸= pY
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This Work

System Model: Continued
Seeds: Sub-databases (G(1),G(2)) consisting of Λn pairs of correctly-matched
rows.

Λn = Θ(nd ): Seed size
d : Seed order

Achievable Database Growth Rate: Given (D(1),D(2),G(1),G(2)) with growth rate
R and seed order d , ∃Θ̂ such that:

Pr(Θ(I) = Θ̂(I)) → 1 as n → ∞,

where I ∼ U(1,mn).

Matching Capacity:
C(d) ≜ sup{R: R is achievable, given seed order d .}

Goal: Given pX , pY |X , pS , d , characterize matching capacity C(d).
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This Work

This Talk: Objectives

1 What is the matching capacity?

2 Can we devise matching schemes which achieve this matching capacity?

3 Can we extract the repetition pattern from seeds?

4 If yes, how many seeds are sufficient?
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Main Results Matching Scheme

Proposed Matching Scheme for Noisy Repetitions

Exploit the identical repetition pattern across rows.

1 Find a permutation-invariant unique feature of the columns of D(2).

2 By threshold testing these features, infer the noisy replicas.

3 Using the seeds (G(1),G(2)), extract the deletion pattern.

4 Group the noisy replica runs by introducing markers between the columns of D(2).

5 Replace the deleted columns with erasure symbols in D(2).

6 Perform a typicality-based rowwise matching.
We will use the Hamming distances between the consecutive columns of D(2) as
the permutation-invariant feature.
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Main Results Matching Scheme

Noisy Replica Detection

Cmn
j : the j th column of D(2), j = 1, . . . ,K .

1 Choose an average threshold τ depending on pX ,Y .
2 Compute the Hamming distances dH(Cmn

j ,Cmn
j+1) between Cmn

j and Cmn
j+1, for

j ∈ [K − 1].
3 Declare Cmn

j and Cmn
j+1 to be

noisy replicas, if dH(Cmn
j ,Cmn

j+1) < mnτ.
independent, if dH(Cmn

j ,Cmn
j+1) ≥ mnτ.
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Main Results Matching Scheme

Noisy Replica Detection: Example
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Main Results Matching Scheme

Noisy Replica Detection

Lemma
Let Ej denote the event that the aforementioned Hamming distance based algorithm
fails to infer the correct relationship between the columns Cmn

j and Cmn
j+1 of D(2),

j = 1, . . . ,K − 1. Then

Pr(
K−1⋃
j=1

Ej) → 0 as n → ∞

No seeds required for noisy replica detection!
mn being exponential in n is enough.
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Main Results Matching Scheme

Lemma: Sketch of Proof

Let (X1,Y1), (X2,Y2) ∼ pX ,Y .

Define
p0 ≜ Pr(Y1 ̸= Y2|X1 |= X2)

p1 ≜ Pr(Y1 ̸= Y2|X1 = X2)

dH(Cmn
j ,Cmn

j+1) follows
Binom(mn, p1) if Cmn

j and Cmn
j+1 are noisy replicas.

Binom(mn, p0) if Cmn
j and Cmn

j+1 are independent.
Show p0 > p1 for any pX ,Y ̸= pX pY .
Choose any τ ∈ (p1, p0) bounded away from p1 and p0.
Union bound on Pr(

⋃K−1
j=1 Ej)

Apply Chernoff bound to the summands
Θ(n) summands, each decaying exponentially with mn.
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dH(Cmn
j ,Cmn

j+1) follows
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j and Cmn
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Main Results Matching Scheme

Seeded Deletion Detection Algorithm
1 Perform noisy replica detection on D(2).
2 Discard all-but-one of the replicas from G(2) to obtain G̃(2).
3 If necessary, apply a mapping Φ to the entries of G̃(2) to obtain G̃(2)

Φ
Φ satisfies

Pr(Φ(Y1) ̸= X2) > Pr(Φ(Y1) ̸= X1)

4 Perform an exhaustive search over all potential deletion patterns on G(1).
5 For each deletion pattern I, compute the total Hamming distance dH(G̃

(1)
I , G̃(2)

Φ )

between G̃(1)
I and G̃(2)

Φ .
6 Output the deletion pattern Îdel(Φ), minimizing total Hamming distance between

G̃(1)
I and G̃(2)

Φ

Îdel(Φ) = argmin
I⊆[n]

dH(G̃
(1)
I , G̃(2)

Φ )
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Main Results Matching Scheme

Seeded Deletion Detection

Lemma
Let Idel be the underlying deletion pattern. Then there exists a bijective mapping Φ
depending on pX ,Y and for seed size Λn ≥ cnHb(δ),

Pr
(
Îdel(Φ) = Idel

)
→ 1 as n → ∞

where Hb denotes the binary entropy function, δ is the column deletion probability and
c depends on pX ,Y .

A seed size linear with the column size n is sufficient!
i.e., a seed size logarithmic with the row size mn is sufficient!
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Main Results Matching Scheme

Lemma: Sketch of Proof
Detection:

Union bound over all deletion patterns

Pr
(
Îdel(Φ) ̸= Idel

)
≤ ∑

I⊆[n],|I |=K̂
Pr(dH(G̃

(1)
I , G̃(2)

Φ ) ≤ dH(G̃
(1)
Idel

, G̃(2)
Φ ))

Observe

dH(G̃
(1)
I , G̃(2)

Φ )− dH(G̃
(1)
Idel

, G̃(2)
Φ ) = M − N

M ∼ Binom(Λn(K̂ − f (I, Idel)), q0(Φ))

N ∼ Binom(Λn(K̂ − f (I, Idel )), q1(Φ))

f (I, Idel): Overlap between the retention (non-deletion) patterns output by I and Idel.
Apply Hoeffding’s inequality to the summands.
Sum over f (I, Idel) instead of I.
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Main Results Matching Scheme

Marker & Erasure Symbol Addition

Y K : a row of D(2).

Y K = [Y1, Y2, Y3, Y4, Y5, Y6, . . .]

[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
Addition

Ỹ = [Y1, Y2| ⇤ |Y3, Y4, Y5|Y6| ⇤ | . . .]
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Main Results Matching Scheme

Marker & Erasure Symbol Addition

Y K : a row of D(2).

Y K = [Y1, Y2, Y3, Y4, Y5, Y6, . . .]

[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
Addition

Ỹ = [Y1, Y2| ⇤ |Y3, Y4, Y5|Y6| ⇤ | . . .]

Ỹ : the corresponding row of D̃(2).
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Main Results Matching Capacity

Main Result

Theorem: Main Result
Given a database distribution pX , a column repetition distribution pS and a noise
distribution pY |X , for any seed order d ≥ 1, the matching capacity is

C(d) = I(X ;Y S ,S)

where S ∼ pS and Y S = Y1, . . . ,YS such that

Pr(Y S = y1, . . . , yS |X = x) =
S

∏
i=1

pY |X (yi |x)
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Main Results Matching Capacity

Main Result: Continued

A logarithmic seed size is enough to infer Sn.

Deleted columns do not offer any information.

Replicated columns offer additional information.
Replication acts as a repetition code
With (randomly) varying length.

We have a complete characterization of the matching capacity.
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Conclusion

Conclusion

Existence of an underlying repetition structure helps.

Replicas can be inferred without any seeds.

A logarithmic seed size is sufficient for deletion detection.

A tight bound on the achievable database growth rates.

Converse result ⇒ Insight into privacy-preserving publication of anonymized
time-indexed microdata.
Ongoing Work:

More efficient deletion detection algorithms.
Extension to more general database distributions.
Database matching when the repetition pattern is not constant across rows.
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Thank you! Q&A?

Seeded Database Matching Under Noisy Column
Repetitions

Serhat Bakirtas, Elza Erkip
serhat.bakirtas@nyu.edu

mailto:serhat.bakirtas@nyu.edu


Seeded Deletion Detection: A Problem

This algorithm does not work for all pX ,Y !

It depends on pairs of correlated entries in G(1) and G̃(2) having a higher
probability of being equal than independent pairs.
Formally, given (X1,Y1) ∼ pX ,Y and (X2,Y1) ∼ pX pY it requires

Pr(Y1 = X1) > Pr(Y1 = X2)

This is not true in general!
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Seeded Deletion Detection: Example
n = 6, Λn = 8. X = {a, b}, pX (a) = pX (b) = 0.5, pY |X ∼BSC(q), q = 0.75.
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Îdel = [2, 6]

Idel = [1, 3]
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Seeded Deletion Detection: Continued

Îdel ̸= Idel in the above example.

Observation: When q > 0.5, a symbol is more likely to flip, instead of staying the
same.

Solution: Flip the symbols, by applying the permutation Φ(a) = b, Φ(b) = a.

After applying Φ, we can use the aforementioned algorithm.
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Lemma: Sketch of Proof
Existence of Φ with desired property:

Let
q0(Φ) ≜ Pr(Φ(Y1) ̸= X2)

q1(Φ) ≜ Pr(Φ(Y1) ̸= X1)

Explicitly write down the terms and show ∑
Φ

q0(Φ)− q1(Φ) = 0.

Consider several one-cycle permutations over X to show that

q0(Φ)− q1(Φ) = 0 ∀Φ ⇔ pY |X (y |x) = pY (y) ∀(x , y) ∈ X2

Thus, as long as pY |X ̸= pY ,

∃Φ q0(Φ) > q1(Φ)
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