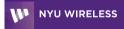
Seeded Database Matching Under Noisy Column Repetitions

Serhat Bakirtas, Elza Erkip

New York University



Information Theory Workshop 2022

2 Background

5 Conclusion

S. Bakirtas, E. Erkip

• Age of data collection.

- Age of data collection.
- Potentially-sensitive data are made available for commercial and research purposes.

- Age of data collection.
- Potentially-sensitive data are made available for commercial and research purposes.
 - User identities are removed: Anonymization.

- Age of data collection.
- Potentially-sensitive data are made available for commercial and research purposes.
 - User identities are removed: Anonymization.
- Are anonymized data truly private?

- Age of data collection.
- Potentially-sensitive data are made available for commercial and research purposes.
 - User identities are removed: Anonymization.
- Are anonymized data truly private?
- NO!

- Age of data collection.
- Potentially-sensitive data are made available for commercial and research purposes.
 - User identities are removed: Anonymization.
- Are anonymized data truly private?
- NO!
 - \bullet Correlated public data \rightarrow De-anonymization!

We Found Joe Biden's Secret Venmo. Here's Why That's A Privacy Nightmare For Everyone.

The peer-to-peer payments app leaves everyone from ordinary people to the most powerful person in the world exposed.

Ryan Mac BuzzFeed News Reporter

Katie Notopoulos BuzzFeed News Reporter

Logan McDonald BuzzFeed Staff

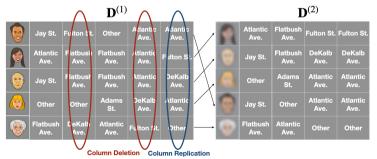
S. Bakirtas, E. Erkip

Motivation: Our Work

- Anonymized databases containing *micro-information* shared and published routinely.
- Examples: Movie preferences, financial transactions data, location data, health records.

Motivation: Our Work

- Anonymized databases containing *micro-information* shared and published routinely.
- Examples: Movie preferences, financial transactions data, location data, health records.
- This work: Time-indexed data, e.g., financial and location data
- Synchronization errors in time-indexed data: column repetitions



2 Background

- Practical Attacks
- Database Matching: Other Applications
- Theoretical Works

3 This Work

4 Main Results

5 Conclusion

Practical Database Matching Attacks

• [Narayanan and Shmatikov, 2008] De-anonymization of Netflix Prize Database using IMDB data.

• [Sweeney, 2002] De-anonymization of medical databases using voter registration data.

• [Naini et al., 2012] User identification from geolocation data.

(a) Unlabeled histograms (Day 1)

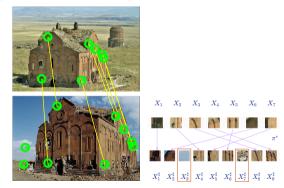
(b) Labeled histograms (Day 2)

User	Location			
	Dorm.	Rest.	Lib.	
?	75%	15%	10%	
?	31%	30%	39%	
?	15%	15%	70%	
?	15%	65%	20%	

User	Location		
	Dorm.	Rest.	Lib.
John	33%	33%	34%
Jill	70%	20%	10%
Mary	15%	60%	25%
Mike	15%	20%	65%

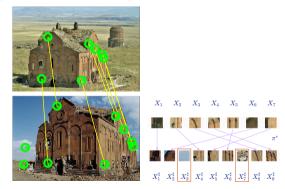
Database Matching: Other Applications

• Computer vision [Galstyan et al., 2021]



Database Matching: Other Applications

• Computer vision [Galstyan et al., 2021]

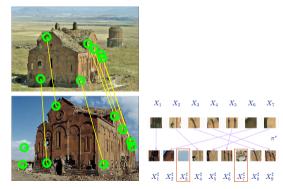


- Biological applications
 - DNA Sequencing [Blazewicz et al., 2002]

🕴 NYU

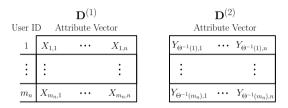
Database Matching: Other Applications

• Computer vision [Galstyan et al., 2021]



- Biological applications
 - DNA Sequencing [Blazewicz et al., 2002]
 - Single-cell data alignment [Chen et al., 2022]

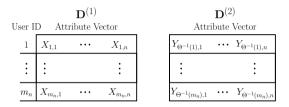
[Shirani, Garg, and Erkip, ISIT 2019]



• Databases as $m_n \times n$ random matrices: equal no. of labeled attributes (columns)

• Matching rows $\sim f_{X^{(1),n},X^{(2),n}}$

[Shirani, Garg, and Erkip, ISIT 2019]



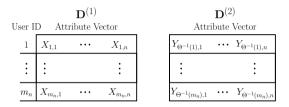
• Databases as $m_n \times n$ random matrices: equal no. of labeled attributes (columns)

• Matching rows $\sim f_{X^{(1),n},X^{(2),n}}$

• Database growth rate:
$$R = \lim_{n \to \infty} \frac{1}{n} \log m_n$$

ITW 2022

[Shirani, Garg, and Erkip, ISIT 2019]



• Databases as $m_n \times n$ random matrices: equal no. of labeled attributes (columns)

- Matching rows $\sim f_{X^{(1),n},X^{(2),n}}$
- Database growth rate: $R = \lim_{n \to \infty} \frac{1}{n} \log m_n$
- Successful matching: $P_e
 ightarrow 0$ as $n
 ightarrow \infty$
- Database matching ⇔ Channel decoding

• Objective: Given $(\mathbf{D}^{(1)}, \mathbf{D}^{(2)})$, find $\hat{\Theta}$ s.t.:

$$\mathsf{Pr}(\Theta(\mathit{I}) = \hat{\Theta}(\mathit{I}))
ightarrow 1$$
 as $\mathit{n}
ightarrow \infty$,

where $I \sim U(1, m_n)$.

• Almost all entries must be matched correctly.

• Objective: Given $(\mathbf{D}^{(1)}, \mathbf{D}^{(2)})$, find $\hat{\Theta}$ s.t.:

$$\mathsf{Pr}(\Theta(\mathit{I}) = \hat{\Theta}(\mathit{I}))
ightarrow 1$$
 as $\mathit{n}
ightarrow \infty$,

where $I \sim U(1, m_n)$.

- <u>Almost</u> all entries must be matched correctly.
 - In [Cullina et al., 2018], [Dai et al., 2019]: All entries must be matched correctly.

• Objective: Given $(\mathbf{D}^{(1)}, \mathbf{D}^{(2)})$, find $\hat{\Theta}$ s.t.:

$$\mathsf{Pr}(\Theta(\mathit{I}) = \hat{\Theta}(\mathit{I}))
ightarrow 1$$
 as $\mathit{n}
ightarrow \infty$,

where $I \sim U(1, m_n)$.

- <u>Almost</u> all entries must be matched correctly.
 - In [Cullina et al., 2018], [Dai et al., 2019]: All entries must be matched correctly.
- This allows us to
 - use information-theoretic tools,
 - work with arbitrary distributions.

[Bakirtas and Erkip, ISIT 2021]

- Database Matching Under Column Deletions.
 - Different numbers of attributes.
 - Attributes are unlabeled.

[Bakirtas and Erkip, ISIT 2021]

- Database Matching Under Column Deletions.
 - Different numbers of attributes.
 - Attributes are unlabeled.
- Sufficient conditions on database matching
 - Side information on the deletion locations.

[Bakirtas and Erkip, ISIT 2021]

- Database Matching Under Column Deletions.
 - Different numbers of attributes.
 - Attributes are unlabeled.
- Sufficient conditions on database matching
 - Side information on the deletion locations.

• Extracting this side information from a batch of correctly-matched rows (seeds).

[Bakirtas and Erkip, Asilomar 2022]

- Matching of Markov Databases Under Random Column Repetitions.
 - Different number of attributes (columns).
 - Attributes are unlabeled.
 - Markov rows.
 - Correlation among attributes
 - Noiseless setting.

[Bakirtas and Erkip, Asilomar 2022]

- Matching of Markov Databases Under Random Column Repetitions.
 - Different number of attributes (columns).
 - Attributes are unlabeled.
 - Markov rows.
 - Correlation among attributes
 - Noiseless setting.
- Repetition detection is possible without seeds in the noiseless setting.

[Bakirtas and Erkip, Asilomar 2022]

- Matching of Markov Databases Under Random Column Repetitions.
 - Different number of attributes (columns).
 - Attributes are unlabeled.
 - Markov rows.
 - Correlation among attributes
 - Noiseless setting.
- Repetition detection is possible without seeds in the noiseless setting.
- Complete characterization of the matching capacity in the noiseless setting.

2 Background

5 Conclusion

S. Bakirtas, E. Erkip

Seeded Database Matching Under Noisy Column Repetitions

ITW 2022

- The attributes are not labeled.
- ② Databases do not have the same number of attributes.
 - Random column repetitions.

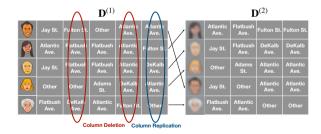
🕴 NYU

- The attributes are not labeled.
- ② Databases do not have the same number of attributes.
 - Random column repetitions.
- The indices of the repeated columns are not known.

🅴 NYU

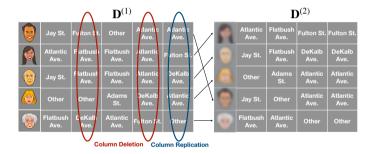
- The attributes are not labeled.
- ② Databases do not have the same number of attributes.
 - Random column repetitions.
- The indices of the repeated columns are not known.
- Repetition pattern is constant across the rows.

- The attributes are not labeled.
- ② Databases do not have the same number of attributes.
 - Random column repetitions.
- The indices of the repeated columns are not known.
- Repetition pattern is constant across the rows.
- The retaining entries are noisy.



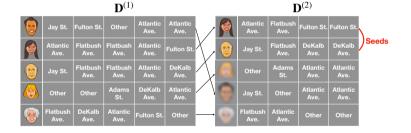
This Talk: Continued

• We have access to a batch of correctly-matched rows, *i.e.*, seeds.



This Talk: Continued

• We have access to a batch of correctly-matched rows, *i.e.*, seeds.



System Model

• $\mathbf{D}^{(1)}$: $m_n \times n$ random matrix with entries $X_{i,j} \stackrel{i.i.d.}{\sim} p_X$.

System Model

- $\mathbf{D}^{(1)}$: $m_n \times n$ random matrix with entries $X_{i,j} \stackrel{i.i.d.}{\sim} p_X$.
- Θ : uniform permutation of $[m_n]$.

System Model

- $\mathbf{D}^{(1)}$: $m_n \times n$ random matrix with entries $X_{i,j} \stackrel{i.i.d.}{\sim} p_X$.
- Θ : uniform permutation of $[m_n]$.

• Column repetition pattern: random vector $S^n = \{S_1, S_2, ..., S_n\}$ with $S_j \stackrel{i.i.d.}{\sim} p_S$. • $supp(p_S) = \{0, ..., s_{max}\}$

This Work

System Model: Continued

$$\mathbf{D}^{(1)} \xrightarrow{\operatorname{Row Shuffling}}_{\Theta_n} \xrightarrow{\operatorname{Repetition}}_{S^n} \xrightarrow{\operatorname{Noise}}_{p_{Y|X}} \xrightarrow{\mathbf{D}^{(2)}}$$

This Work

System Model: Continued

$$\mathbf{D}^{(1)} \xrightarrow[]{\text{Row Shuffling}}_{\Theta_n} \xrightarrow[]{\text{Repetition}}_{S^n} \xrightarrow[]{\text{Noise}}_{p_{Y|X}} \xrightarrow[]{\text{Noise}}_{D^{(2)}} \mathbf{D}^{(2)}$$

- $\boldsymbol{\mathsf{D}}^{(2)}:$ Obtained from $\boldsymbol{\mathsf{D}}^{(1)}$ by
 - **()** Row shuffling by Θ .

$$\mathbf{D}^{(1)} \xrightarrow[]{\text{Row Shuffling}}_{\Theta_n} \xrightarrow[]{\text{Repetition}}_{S^n} \xrightarrow[]{\text{Noise}}_{p_{Y|X}} \xrightarrow[]{\text{Noise}}_{D^{(2)}} (2)$$

 $\boldsymbol{\mathsf{D}}^{(2)}:$ Obtained from $\boldsymbol{\mathsf{D}}^{(1)}$ by

- **(**) Row shuffling by Θ .
- **2** Column deletion/replication by S^n .
 - Replicate the j^{th} column S_j times if $S_j > 0$.
 - Delete the j^{th} column if $S_j = 0$.

$$\mathbf{D}^{(1)} \xrightarrow[]{\text{Row Shuffling}}_{\Theta_n} \xrightarrow[]{\text{Repetition}}_{S^n} \xrightarrow[]{\text{Noise}}_{p_{Y|X}} \xrightarrow[]{\text{Noise}}_{D^{(2)}} (2)$$

 $\boldsymbol{\mathsf{D}}^{(2)}:$ Obtained from $\boldsymbol{\mathsf{D}}^{(1)}$ by

- **(**) Row shuffling by Θ .
- **2** Column deletion/replication by S^n .
 - Replicate the j^{th} column S_j times if $S_j > 0$.
 - Delete the j^{th} column if $S_j = 0$.
- **(a)** *i.i.d.* noise $p_{Y|X}$ on the retained entries.

$$\mathbf{D}^{(1)} \xrightarrow[]{\text{Row Shuffling}}_{\Theta_n} \xrightarrow[]{\text{Repetition}}_{S^n} \xrightarrow[]{\text{Noise}}_{p_{Y|X}} \xrightarrow[]{\text{Noise}}_{D^{(2)}} \mathbf{D}^{(2)}$$

 $\boldsymbol{\mathsf{D}}^{(2)}:$ Obtained from $\boldsymbol{\mathsf{D}}^{(1)}$ by

- **(**) Row shuffling by Θ .
- **2** Column deletion/replication by S^n .
 - Replicate the j^{th} column S_j times if $S_j > 0$.
 - Delete the j^{th} column if $S_j = 0$.
- **(a)** *i.i.d.* noise $p_{Y|X}$ on the retained entries.
 - X and Y are not independent: $p_{Y|X} \neq p_Y$

• Seeds: Sub-databases $(\mathbf{G}^{(1)}, \mathbf{G}^{(2)})$ consisting of Λ_n pairs of correctly-matched rows.

•
$$\Lambda_n = \Theta(n^d)$$
: Seed size

• d: Seed order

- Seeds: Sub-databases (G⁽¹⁾, G⁽²⁾) consisting of Λ_n pairs of correctly-matched rows.
 - $\Lambda_n = \Theta(n^d)$: Seed size
 - d: Seed order
- Achievable Database Growth Rate: Given $(\mathbf{D}^{(1)}, \mathbf{D}^{(2)}, \mathbf{G}^{(1)}, \mathbf{G}^{(2)})$ with growth rate R and seed order d, $\exists \hat{\Theta}$ such that:

$$\mathsf{Pr}(\Theta({\it I})=\hat{\Theta}({\it I}))
ightarrow 1$$
 as $n
ightarrow\infty$,

where $I \sim U(1, m_n)$.

• Matching Capacity:

 $C(d) \triangleq \sup\{R: R \text{ is achievable, given seed order } d.\}$

13 / 27

- Seeds: Sub-databases (G⁽¹⁾, G⁽²⁾) consisting of Λ_n pairs of correctly-matched rows.
 - $\Lambda_n = \Theta(n^d)$: Seed size
 - d: Seed order
- Achievable Database Growth Rate: Given $(\mathbf{D}^{(1)}, \mathbf{D}^{(2)}, \mathbf{G}^{(1)}, \mathbf{G}^{(2)})$ with growth rate R and seed order d, $\exists \hat{\Theta}$ such that:

$$\mathsf{Pr}(\Theta({\it I})=\hat{\Theta}({\it I}))
ightarrow 1$$
 as $n
ightarrow\infty$,

where $I \sim U(1, m_n)$.

• Matching Capacity:

 $C(d) \triangleq \sup\{R: R \text{ is achievable, given seed order } d.\}$

• Goal: Given p_X , $p_{Y|X}$, p_S , d, characterize matching capacity C(d).

13 / 27

• What is the matching capacity?

- What is the matching capacity?
- ② Can we devise matching schemes which achieve this matching capacity?

- What is the matching capacity?
- ② Can we devise matching schemes which achieve this matching capacity?
- S Can we extract the repetition pattern from seeds?

- What is the matching capacity?
- ② Can we devise matching schemes which achieve this matching capacity?
- S Can we extract the repetition pattern from seeds?
- If yes, how many seeds are sufficient?

Introduction

2 Background

Main Results

- Matching Scheme
- Matching Capacity

5 Conclusion

• Exploit the identical repetition pattern across rows.

- Exploit the identical repetition pattern across rows.
 - **(**) Find a permutation-invariant unique feature of the columns of $D^{(2)}$.

- Exploit the identical repetition pattern across rows.
 - § Find a permutation-invariant unique feature of the columns of $D^{(2)}$.
 - Ø By threshold testing these features, infer the noisy replicas.

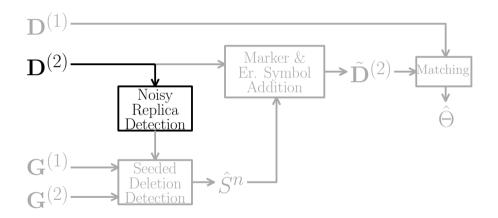
- Exploit the identical repetition pattern across rows.
 - § Find a permutation-invariant unique feature of the columns of $D^{(2)}$.
 - Ø By threshold testing these features, infer the noisy replicas.
 - **③** Using the seeds $(\mathbf{G}^{(1)}, \mathbf{G}^{(2)})$, extract the deletion pattern.

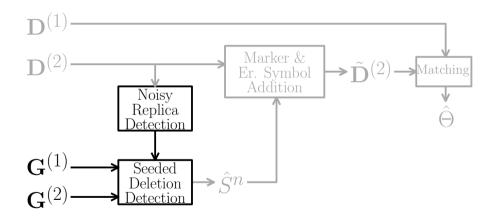
- Exploit the identical repetition pattern across rows.
 - § Find a permutation-invariant unique feature of the columns of $D^{(2)}$.
 - Ø By threshold testing these features, infer the noisy replicas.
 - **③** Using the seeds $(\mathbf{G}^{(1)}, \mathbf{G}^{(2)})$, extract the deletion pattern.
 - **③** Group the noisy replica runs by introducing markers between the columns of $D^{(2)}$.

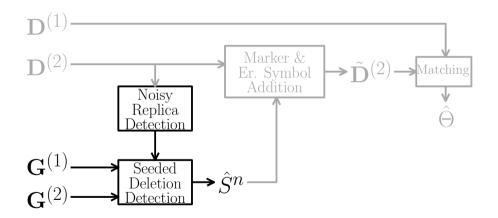
- Exploit the identical repetition pattern across rows.
 - § Find a permutation-invariant unique feature of the columns of $D^{(2)}$.
 - Ø By threshold testing these features, infer the noisy replicas.
 - **③** Using the seeds $(\mathbf{G}^{(1)}, \mathbf{G}^{(2)})$, extract the deletion pattern.
 - **③** Group the noisy replica runs by introducing markers between the columns of $D^{(2)}$.
 - **③** Replace the deleted columns with erasure symbols in $D^{(2)}$.

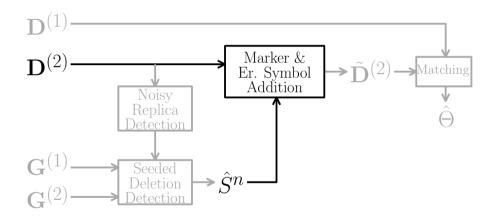
- Exploit the identical repetition pattern across rows.
 - § Find a permutation-invariant unique feature of the columns of $D^{(2)}$.
 - Ø By threshold testing these features, infer the noisy replicas.
 - **③** Using the seeds $(\mathbf{G}^{(1)}, \mathbf{G}^{(2)})$, extract the deletion pattern.
 - **③** Group the noisy replica runs by introducing markers between the columns of $D^{(2)}$.
 - **③** Replace the deleted columns with erasure symbols in $D^{(2)}$.
 - O Perform a typicality-based rowwise matching.

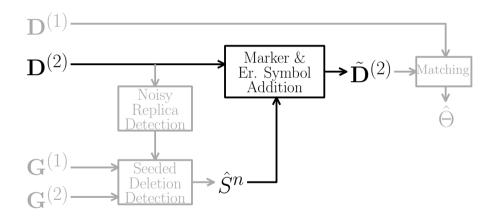
- Exploit the identical repetition pattern across rows.
 - § Find a permutation-invariant unique feature of the columns of $D^{(2)}$.
 - Ø By threshold testing these features, infer the noisy replicas.
 - **③** Using the seeds $(\mathbf{G}^{(1)}, \mathbf{G}^{(2)})$, extract the deletion pattern.
 - **③** Group the noisy replica runs by introducing markers between the columns of $D^{(2)}$.
 - **(5)** Replace the deleted columns with erasure symbols in $D^{(2)}$.
 - **O** Perform a typicality-based rowwise matching.
- We will use the *Hamming distances between the consecutive columns of* **D**⁽²⁾ as the permutation-invariant feature.

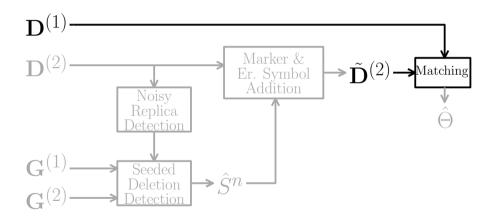


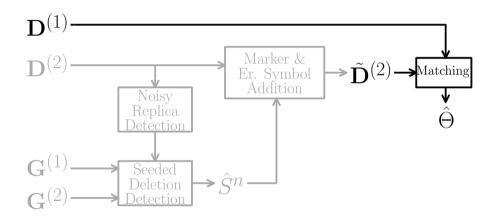












• $C_j^{m_n}$: the j^{th} column of $\mathbf{D}^{(2)}$, $j = 1, \ldots, K$.

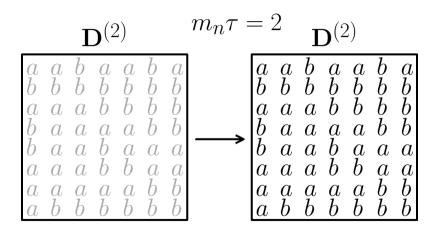
- $C_j^{m_n}$: the j^{th} column of $\mathbf{D}^{(2)}$, $j = 1, \dots, K$.
- Choose an average threshold τ depending on $p_{X,Y}$.

- $C_j^{m_n}$: the j^{th} column of $\mathbf{D}^{(2)}$, $j = 1, \dots, K$.
- Choose an average threshold τ depending on $p_{X,Y}$.
- ② Compute the Hamming distances $d_H(C_j^{m_n}, C_{j+1}^{m_n})$ between $C_j^{m_n}$ and $C_{j+1}^{m_n}$, for j ∈ [K − 1].

- $C_j^{m_n}$: the j^{th} column of $\mathbf{D}^{(2)}$, $j = 1, \dots, K$.
- **(1)** Choose an average threshold τ depending on $p_{X,Y}$.
- ② Compute the Hamming distances $d_H(C_j^{m_n}, C_{j+1}^{m_n})$ between $C_j^{m_n}$ and $C_{j+1}^{m_n}$, for j ∈ [K − 1].
- **③** Declare $C_j^{m_n}$ and $C_{j+1}^{m_n}$ to be
 - noisy replicas, if $d_H(C_i^{m_n}, C_{i+1}^{m_n}) < m_n \tau$.
 - independent, if $d_H(C_j^{\check{m}_n}, C_{j+1}^{\check{m}_n}) \ge m_n \tau$.

Matching Scheme

Noisy Replica Detection: Example

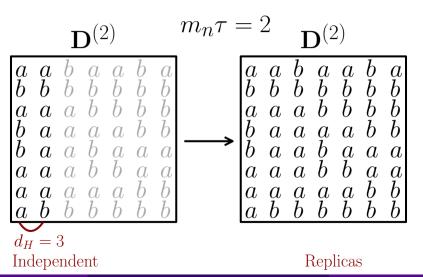


Replicas

S. Bakirtas, E. Erkip

Matching Scheme

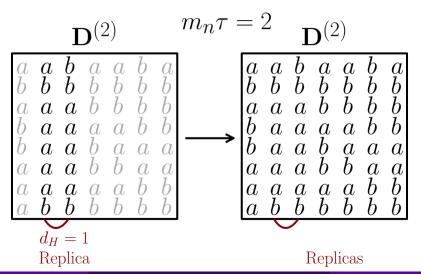
Noisy Replica Detection: Example



Seeded Database Matching Under Noisy Column Repetitions

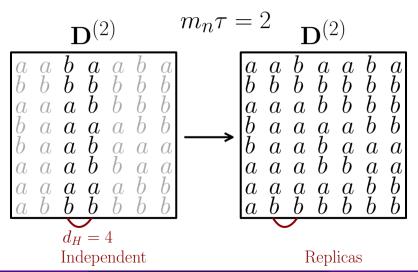
Matching Scheme

Noisy Replica Detection: Example



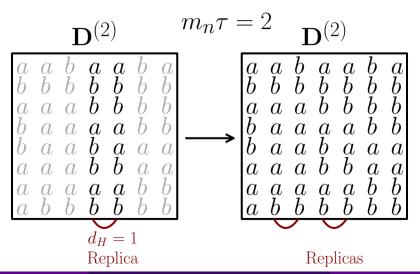
Seeded Database Matching Under Noisy Column Repetitions

Noisy Replica Detection: Example

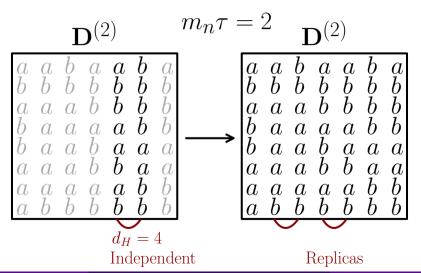


Seeded Database Matching Under Noisy Column Repetitions

Noisy Replica Detection: Example

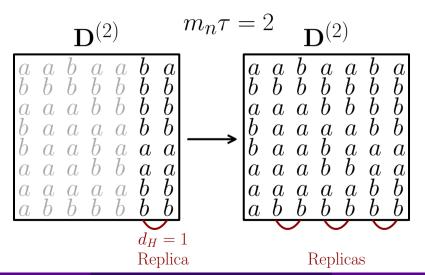


Noisy Replica Detection: Example



Seeded Database Matching Under Noisy Column Repetitions

Noisy Replica Detection: Example



Seeded Database Matching Under Noisy Column Repetitions

Noisy Replica Detection

Lemma

Let E_j denote the event that the aforementioned Hamming distance based algorithm fails to infer the correct relationship between the columns $C_j^{m_n}$ and $C_{j+1}^{m_n}$ of $\mathbf{D}^{(2)}$, $j = 1, \ldots, K - 1$. Then

$$\mathsf{Pr}(igcup_{j=1}^{\mathcal{K}-1} E_j) o \mathsf{0} ext{ as } n o \infty$$

Noisy Replica Detection

Lemma

Let E_j denote the event that the aforementioned Hamming distance based algorithm fails to infer the correct relationship between the columns $C_j^{m_n}$ and $C_{j+1}^{m_n}$ of $\mathbf{D}^{(2)}$, $j = 1, \ldots, K - 1$. Then

$$\mathsf{Pr}(igcup_{j=1}^{\mathsf{K}-1} \mathsf{E}_j) o \mathsf{0} ext{ as } \mathsf{n} o \infty$$

• No seeds required for noisy replica detection!

Noisy Replica Detection

Lemma

Let E_j denote the event that the aforementioned Hamming distance based algorithm fails to infer the correct relationship between the columns $C_j^{m_n}$ and $C_{j+1}^{m_n}$ of $\mathbf{D}^{(2)}$, $j = 1, \ldots, K - 1$. Then

$$\mathsf{Pr}(igcup_{j=1}^{\mathsf{K}-1} \mathsf{E}_j) o \mathsf{0} ext{ as } \mathsf{n} o \infty$$

- No seeds required for noisy replica detection!
- m_n being exponential in n is enough.

• Let $(X_1, Y_1), (X_2, Y_2) \sim p_{X,Y}$.

- Let $(X_1, Y_1), (X_2, Y_2) \sim p_{X,Y}$.
- Define

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \perp X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

• Let $(X_1, Y_1), (X_2, Y_2) \sim p_{X Y}$.

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \perp X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

- $d_H(C_i^{m_n}, C_{i+1}^{m_n})$ follows
 - Binom (m_n, p_1) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are noisy replicas.
 - Binom (m_n, p_0) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are independent.

• Let $(X_1, Y_1), (X_2, Y_2) \sim p_{X Y}$.

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \perp X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

- $d_H(C_i^{m_n}, C_{i+1}^{m_n})$ follows
 - Binom (m_n, p_1) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are noisy replicas.
 - Binom (m_n, p_0) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are independent.
- Show $p_0 > p_1$ for any $p_X y \neq p_X p_Y$.

• Let (X_1, Y_1) , $(X_2, Y_2) \sim p_{X,Y}$.

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \bot X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

- $d_H(C_j^{m_n}, C_{j+1}^{m_n})$ follows
 - Binom (m_n, p_1) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are noisy replicas.
 - Binom (m_n, p_0) if $\tilde{C}_i^{m_n}$ and $\tilde{C}_{i+1}^{m_n}$ are independent.
- Show $p_0 > p_1$ for any $p_{X,Y} \neq p_X p_Y$.
- Choose any $\tau \in (p_1, p_0)$ bounded away from p_1 and p_0 .

• Let (X_1, Y_1) , $(X_2, Y_2) \sim p_{X,Y}$.

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \bot X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

- $d_H(C_j^{m_n}, C_{j+1}^{m_n})$ follows
 - Binom (m_n, p_1) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are noisy replicas.
 - Binom (m_n, p_0) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are independent.
- Show $p_0 > p_1$ for any $p_{X,Y} \neq p_X p_Y$.
- Choose any $\tau \in (p_1, p_0)$ bounded away from p_1 and p_0 .
- Union bound on $\Pr(\bigcup_{j=1}^{K-1} E_j)$

• Let (X_1, Y_1) , $(X_2, Y_2) \sim p_{X,Y}$.

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \perp X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

- $d_H(C_j^{m_n}, C_{j+1}^{m_n})$ follows
 - Binom (m_n, p_1) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are noisy replicas.
 - Binom (m_n, p_0) if $\tilde{C}_i^{m_n}$ and $\tilde{C}_{i+1}^{m_n}$ are independent.
- Show $p_0 > p_1$ for any $p_{X,Y} \neq p_X p_Y$.
- Choose any $\tau \in (p_1, p_0)$ bounded away from p_1 and p_0 .
- Union bound on $\Pr(\bigcup_{j=1}^{K-1} E_j)$
- Apply Chernoff bound to the summands

• Let $(X_1, Y_1), (X_2, Y_2) \sim p_{X,Y}$.

$$p_0 \triangleq \Pr(Y_1 \neq Y_2 | X_1 \perp X_2)$$
$$p_1 \triangleq \Pr(Y_1 \neq Y_2 | X_1 = X_2)$$

- $d_H(C_j^{m_n}, C_{j+1}^{m_n})$ follows
 - Binom (m_n, p_1) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are noisy replicas.
 - Binom (m_n, p_0) if $C_i^{m_n}$ and $C_{i+1}^{m_n}$ are independent.
- Show $p_0 > p_1$ for any $p_{X,Y} \neq p_X p_Y$.
- Choose any $au \in (p_1, p_0)$ bounded away from p_1 and p_0 .
- Union bound on $\Pr(\bigcup_{j=1}^{K-1} E_j)$
- Apply Chernoff bound to the summands
- $\Theta(n)$ summands, each decaying exponentially with m_n .

Seeded Deletion Detection Algorithm

- **1** Perform noisy replica detection on $\mathbf{D}^{(2)}$.
- 2 Discard all-but-one of the replicas from $\mathbf{G}^{(2)}$ to obtain $\tilde{\mathbf{G}}^{(2)}$.
- \bullet If necessary, apply a mapping Φ to the entries of $\tilde{\mathbf{G}}^{(2)}$ to obtain $\tilde{\mathbf{G}}^{(2)}_{\Phi}$ • Φ satisfies

$$\Pr(\Phi(Y_1) \neq X_2) > \Pr(\Phi(Y_1) \neq X_1)$$

- **O** Perform an exhaustive search over all potential deletion patterns on $G^{(1)}$.
- So For each deletion pattern *I*, compute the total Hamming distance $d_H(\tilde{\mathbf{G}}_{I}^{(1)}, \tilde{\mathbf{G}}_{\pi}^{(2)})$ between $\tilde{\mathbf{G}}_{L}^{(1)}$ and $\tilde{\mathbf{G}}_{\Phi}^{(2)}$.
- **Output** the deletion pattern $\hat{l}_{del}(\Phi)$, minimizing total Hamming distance between $\tilde{\mathbf{G}}_{\iota}^{(1)}$ and $\tilde{\mathbf{G}}_{\Phi}^{(2)}$

$$\hat{\mathit{l}}_{\mathsf{del}}(\Phi) = \mathop{\arg\min}_{\textit{I}\subseteq[n]} \mathit{d}_{\textit{H}}(\tilde{\mathbf{G}}_{\textit{I}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)})$$

Seeded Deletion Detection

Lemma

Let I_{del} be the underlying deletion pattern. Then there exists a bijective mapping Φ depending on $p_{X,Y}$ and for seed size $\Lambda_n \geq cnH_b(\delta)$,

$$\mathsf{Pr}\left(\widehat{\mathit{l}}_{\mathsf{del}}(\Phi) = \mathit{l}_{\mathsf{del}}
ight) o 1 ext{ as } n o \infty$$

where H_b denotes the binary entropy function, δ is the column deletion probability and c depends on $p_{X,Y}$.

Seeded Deletion Detection

Lemma

Let I_{del} be the underlying deletion pattern. Then there exists a bijective mapping Φ depending on $p_{X,Y}$ and for seed size $\Lambda_n \geq cnH_b(\delta)$,

$$\mathsf{Pr}\left(\widehat{\mathit{l}}_\mathsf{del}(\Phi) = \mathit{l}_\mathsf{del}
ight)
ightarrow 1$$
 as $n
ightarrow \infty$

where H_b denotes the binary entropy function, δ is the column deletion probability and c depends on $p_{X,Y}$.

• A seed size linear with the column size *n* is sufficient!

Seeded Deletion Detection

Lemma

Let I_{del} be the underlying deletion pattern. Then there exists a bijective mapping Φ depending on $p_{X,Y}$ and for seed size $\Lambda_n \ge cnH_b(\delta)$,

$$\mathsf{Pr}\left(\widehat{\mathit{l}}_\mathsf{del}(\Phi) = \mathit{l}_\mathsf{del}
ight)
ightarrow 1$$
 as $n
ightarrow \infty$

where H_b denotes the binary entropy function, δ is the column deletion probability and c depends on $p_{X,Y}$.

- A seed size linear with the column size *n* is sufficient!
- *i.e.*, a seed size logarithmic with the row size m_n is sufficient!

Detection:

• Union bound over all deletion patterns

$$\Pr\left(\hat{l}_{\mathsf{del}}(\Phi) \neq l_{\mathsf{del}}\right) \leq \sum_{I \subseteq [n], |I| = \hat{K}} \Pr(d_{H}(\tilde{\mathbf{G}}_{I}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) \leq d_{H}(\tilde{\mathbf{G}}_{I_{\mathsf{del}}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}))$$

Detection:

• Union bound over all deletion patterns

$$\Pr\left(\hat{l}_{\mathsf{del}}(\Phi) \neq \mathit{I}_{\mathsf{del}}\right) \leq \sum_{\mathit{I} \subseteq [\mathit{n}], |\mathit{I}| = \hat{K}} \Pr(\mathit{d}_{\mathit{H}}(\tilde{\mathbf{G}}_{\mathit{I}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) \leq \mathit{d}_{\mathit{H}}(\tilde{\mathbf{G}}_{\mathit{I}_{\mathsf{del}}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}))$$

• Observe

$$\begin{aligned} & d_{H}(\tilde{\mathbf{G}}_{I}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) - d_{H}(\tilde{\mathbf{G}}_{I_{\text{del}}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) = M - N \\ & M \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I, I_{\text{del}})), q_{0}(\Phi)) \\ & N \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I, I_{\text{del}})), q_{1}(\Phi)) \end{aligned}$$

Detection:

• Union bound over all deletion patterns

$$\Pr\left(\hat{l}_{\mathsf{del}}(\Phi) \neq \mathit{I}_{\mathsf{del}}\right) \leq \sum_{\mathit{I} \subseteq [\mathit{n}], |\mathit{I}| = \hat{K}} \Pr(\mathit{d}_{\mathit{H}}(\tilde{\mathbf{G}}_{\mathit{I}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) \leq \mathit{d}_{\mathit{H}}(\tilde{\mathbf{G}}_{\mathit{I}_{\mathsf{del}}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}))$$

Observe

$$\begin{aligned} & d_{H}(\tilde{\mathbf{G}}_{I}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) - d_{H}(\tilde{\mathbf{G}}_{I_{del}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) = M - N \\ & M \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I, I_{del})), q_{0}(\Phi)) \\ & N \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I, I_{del})), q_{1}(\Phi)) \end{aligned}$$

• $f(I, I_{del})$: Overlap between the retention (non-deletion) patterns output by I and I_{del} .

Detection:

• Union bound over all deletion patterns

$$\Pr\left(\hat{l}_{\mathsf{del}}(\Phi) \neq l_{\mathsf{del}}\right) \leq \sum_{I \subseteq [n], |I| = \hat{K}} \Pr(d_{H}(\tilde{\mathbf{G}}_{I}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) \leq d_{H}(\tilde{\mathbf{G}}_{I_{\mathsf{del}}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}))$$

Observe

$$\begin{aligned} & d_{H}(\tilde{\mathbf{G}}_{I}^{(1)},\tilde{\mathbf{G}}_{\Phi}^{(2)}) - d_{H}(\tilde{\mathbf{G}}_{I_{\text{del}}}^{(1)},\tilde{\mathbf{G}}_{\Phi}^{(2)}) = M - N \\ & M \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I,I_{\text{del}})),q_{0}(\Phi)) \\ & N \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I,I_{\text{del}})),q_{1}(\Phi)) \end{aligned}$$

f(I, I_{del}): Overlap between the retention (non-deletion) patterns output by I and I_{del}.
Apply Hoeffding's inequality to the summands.

Detection:

• Union bound over all deletion patterns

$$\Pr\left(\hat{l}_{\mathsf{del}}(\Phi) \neq l_{\mathsf{del}}\right) \leq \sum_{I \subseteq [n], |I| = \hat{K}} \Pr(d_{H}(\tilde{\mathbf{G}}_{I}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}) \leq d_{H}(\tilde{\mathbf{G}}_{I_{\mathsf{del}}}^{(1)}, \tilde{\mathbf{G}}_{\Phi}^{(2)}))$$

Observe

$$\begin{aligned} & d_{H}(\tilde{\mathbf{G}}_{I}^{(1)},\tilde{\mathbf{G}}_{\Phi}^{(2)}) - d_{H}(\tilde{\mathbf{G}}_{I_{\text{del}}}^{(1)},\tilde{\mathbf{G}}_{\Phi}^{(2)}) = M - N \\ & M \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I,I_{\text{del}})),q_{0}(\Phi)) \\ & N \sim \text{Binom}(\Lambda_{n}(\hat{K} - f(I,I_{\text{del}})),q_{1}(\Phi)) \end{aligned}$$

• $f(I, I_{del})$: Overlap between the retention (non-deletion) patterns output by I and I_{del} .

- Apply Hoeffding's inequality to the summands.
- Sum over $f(I, I_{del})$ instead of I.

 Y^{K} : a row of $\mathbf{D}^{(2)}$.

$$\begin{split} \tilde{Y} &= [Y_1, Y_2] * |Y_3, Y_4, Y_5|Y_6| * | \dots] \\ & & \uparrow \\ & & & \\ \hline & & \\$$

 \hat{S}^n

 Y^{K} : a row of $\mathbf{D}^{(2)}$.

 V^K

 \hat{S}^n

 Y^{K} : a row of $\mathbf{D}^{(2)}$.

$$\tilde{Y} = [Y_1, Y_2] * |Y_3, Y_4, Y_5|Y_6| * | \dots]$$

$$\begin{bmatrix} 1 \\ Frasure Symbol \\ Addition \\ \hline \\ [Y_1, Y_2] |Y_3, Y_4, Y_5|Y_6| | \dots] \\ \hline \\ \\ = [Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, \dots] \xrightarrow{} Marker Addition \\ = [2, 0, 3, 1, 0, \dots] \xrightarrow{}$$

 Y^K : a row of $\mathbf{D}^{(2)}$.

$$\begin{split} \tilde{Y} &= [Y_1, Y_2] * |Y_3, Y_4, Y_5|Y_6| * | \dots] \\ & \uparrow \\ & [Y_1, Y_2||Y_3, Y_4, Y_5|Y_6|| \dots] \\ & \uparrow \\ & [Y_1, Y_2||Y_3, Y_4, Y_5|Y_6|| \dots] \\ & \uparrow \\ & [Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, \dots] \longrightarrow \\ & Marker Addition \\ & \hat{S}^n = [2, 0, 3, 1, 0, \dots] \\ & \end{split}$$

 \tilde{Y} : the corresponding row of $\tilde{\mathbf{D}}^{(2)}$.

 V^K

S. Bakirtas, E. Erkip

ITW 2022

Main Result

Theorem: Main Result

Given a database distribution p_X , a column repetition distribution p_S and a noise distribution $p_{Y|X}$, for any seed order $d \ge 1$, the matching capacity is

$$C(d) = I(X; Y^S, S)$$

where $S \sim p_S$ and $Y^S = Y_1, \ldots, Y_S$ such that

$$\Pr(Y^{S} = y_{1}, \dots, y_{S} | X = x) = \prod_{i=1}^{S} p_{Y|X}(y_{i} | x)$$

• A logarithmic seed size is enough to infer S^n .

- A logarithmic seed size is enough to infer S^n .
- Deleted columns do not offer any information.

- A logarithmic seed size is enough to infer S^n .
- Deleted columns do not offer any information.
- Replicated columns offer additional information.

- A logarithmic seed size is enough to infer S^n .
- Deleted columns do not offer any information.
- Replicated columns offer additional information.
 - Replication acts as a repetition code
 - With (randomly) varying length.

- A logarithmic seed size is enough to infer S^n .
- Deleted columns do not offer any information.
- Replicated columns offer additional information.
 - Replication acts as a repetition code
 - With (randomly) varying length.
- We have a complete characterization of the matching capacity.

2 Background

Conclusion

• Existence of an underlying repetition structure helps.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.
- A logarithmic seed size is sufficient for deletion detection.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.
- A logarithmic seed size is sufficient for deletion detection.
- A tight bound on the achievable database growth rates.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.
- A logarithmic seed size is sufficient for deletion detection.
- A tight bound on the achievable database growth rates.
- Converse result \Rightarrow Insight into privacy-preserving publication of anonymized time-indexed microdata.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.
- A logarithmic seed size is sufficient for deletion detection.
- A tight bound on the achievable database growth rates.
- \bullet Converse result \Rightarrow Insight into privacy-preserving publication of anonymized time-indexed microdata.
- Ongoing Work:
 - More efficient deletion detection algorithms.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.
- A logarithmic seed size is sufficient for deletion detection.
- A tight bound on the achievable database growth rates.
- Converse result \Rightarrow Insight into privacy-preserving publication of anonymized time-indexed microdata.
- Ongoing Work:
 - More efficient deletion detection algorithms.
 - Extension to more general database distributions.

- Existence of an underlying repetition structure helps.
- Replicas can be inferred without any seeds.
- A logarithmic seed size is sufficient for deletion detection.
- A tight bound on the achievable database growth rates.
- Converse result \Rightarrow Insight into privacy-preserving publication of anonymized time-indexed microdata.
- Ongoing Work:
 - More efficient deletion detection algorithms.
 - Extension to more general database distributions.
 - Database matching when the repetition pattern is not constant across rows.

Thank you! Q&A?

Seeded Database Matching Under Noisy Column Repetitions

Serhat Bakirtas, Elza Erkip

serhat.bakirtas@nyu.edu

• This algorithm does not work for all $p_{X,Y}$!

- This algorithm does not work for all $p_{X,Y}$!
- It depends on pairs of correlated entries in ${\bf G}^{(1)}$ and $\tilde{{\bf G}}^{(2)}$ having a higher probability of being equal than independent pairs.

- This algorithm does not work for all $p_{X,Y}$!
- It depends on pairs of correlated entries in $\mathbf{G}^{(1)}$ and $\tilde{\mathbf{G}}^{(2)}$ having a higher probability of being equal than independent pairs.
- Formally, given $(X_1, Y_1) \sim p_{X,Y}$ and $(X_2, Y_1) \sim p_X p_Y$ it requires

$$\Pr(Y_1 = X_1) > \Pr(Y_1 = X_2)$$

- This algorithm does not work for all $p_{X,Y}$!
- It depends on pairs of correlated entries in $\mathbf{G}^{(1)}$ and $\tilde{\mathbf{G}}^{(2)}$ having a higher probability of being equal than independent pairs.
- Formally, given $(X_1, Y_1) \sim p_{X,Y}$ and $(X_2, Y_1) \sim p_X p_Y$ it requires

$$\Pr(Y_1 = X_1) > \Pr(Y_1 = X_2)$$

• This is not true in general!

$$\hat{I}_{del} = [2, \ 6]$$

$$n = 6, \Lambda_n = 8. \ \mathfrak{X} = \{a, b\}, \ p_X(a) = p_X(b) = 0.5, \ p_{Y|X} \sim \mathsf{BSC}(q), \ q = 0.75.$$

$$I_{del} = [1, \ 3]$$

$$\mathbf{G}^{(1)} \qquad \tilde{\mathbf{G}}^{(2)}$$

$$\begin{bmatrix} b & b & a & b & a & a \\ b & b & a & b & a & a \\ a & b & a & b & b & b \\ a & a & a & b & a & b \\ a & a & a & b & a & a \\ a & a & a & b & b & a \\ b & b & b & a & b & a \\ b & b & b & a & a & a \\ a & a & a & b & a & a \\ b & b & b & a & b & a \\ b & b & b & a & b & a \\ b & b & b & a & b & a \\ b & b & a & b & a & a \\ b & b & a & b & a & a \\ c = (1, \ 3]$$

$$\hat{I}_{del} = [2, \ 6]$$

$$n = 6, \Lambda_n = 8. \ \mathfrak{X} = \{a, b\}, \ p_X(a) = p_X(b) = 0.5, \ p_{Y|X} \sim \mathsf{BSC}(q), \ q = 0.75.$$

$$I_{del} = [1, \ 3]$$

$$\mathbf{G}^{(1)} \qquad \tilde{\mathbf{G}}^{(2)}$$

$$\begin{bmatrix} a & b & a & b \\ a & a & b & b & a \\ a & a & a & b & a \\ a & a & a & b & a \\ a & a & a & b & a \\ b & b & b & a & b \\ a & a & a & b & a \\ b & b & b & a & b \\ b & b & a & b & a \\ b & b & a & b & a \\ b & b & a & b & a \\ c = a & b & b \\ c = b & c & c \\ c$$

$$\hat{I}_{del} = [2, \ 6]$$

$$n = 6, \Lambda_n = 8. \ \mathfrak{X} = \{a, b\}, \ p_X(a) = p_X(b) = 0.5, \ p_{Y|X} \sim \mathsf{BSC}(q), \ q = 0.75.$$

$$I_{del} = \begin{bmatrix} 1, \ 3 \end{bmatrix}$$

$$\mathbf{G}^{(1)} \qquad \qquad \tilde{\mathbf{G}}^{(2)}$$

$$\begin{bmatrix} a & b & a & b \\ a & a & b & a & b \\ a & a & a & b & a & b \\ a & a & a & b & a & b \\ a & a & a & b & b & a \\ a & a & a & b & a & a \\ b & b & b & a & b & a \\ b & b & b & a & b & a \\ b & b & a & b & a & a \\ \end{bmatrix} \begin{bmatrix} a & b & a & b \\ a & a & b & b \\ a & a & a & b \\ a & a & a & b & b \\ a & a & a & b & b \\ a & a & a & b & b \\ a & a & a & b & b \\ a & a & a & b & b \\ b & b & b \\ a & b & b \\ b & b & b \\ a & b & b \\ b & b & b \\ b & b & b \\ c & b & c \\ c & c \\ c$$

$$\hat{I}_{del} = [2, \ 6]$$

$$\hat{I}_{del} = [2, \ 6]$$

• $\hat{l}_{del} \neq l_{del}$ in the above example.

- $\hat{l}_{del} \neq l_{del}$ in the above example.
- Observation: When q > 0.5, a symbol is more likely to flip, instead of staying the same.

- $\hat{l}_{del} \neq l_{del}$ in the above example.
- Observation: When q > 0.5, a symbol is more likely to flip, instead of staying the same.
- Solution: Flip the symbols, by applying the permutation $\Phi(a) = b$, $\Phi(b) = a$.

- $\hat{l}_{del} \neq l_{del}$ in the above example.
- Observation: When q > 0.5, a symbol is more likely to flip, instead of staying the same.
- Solution: Flip the symbols, by applying the permutation $\Phi(a) = b$, $\Phi(b) = a$.
- \bullet After applying $\Phi,$ we can use the aforementioned algorithm.

$$\hat{I}_{del}(\Phi) = [1, 3]$$

$$I_{del} = [1, 3]$$

$$\mathbf{G}^{(1)} \qquad \mathbf{\tilde{G}}_{\Phi}^{(2)}$$

$$\begin{array}{c} b & b & a & b & a & a \\ a & b & a & b & b & a \\ a & b & a & b & b & b \\ a & a & a & b & a & b \\ a & a & a & a & a & a \\ a & a & a & b & b & a \\ b & b & b & a & b & a \\ b & b & b & a & b & a \\ b & b & a & b & a & a \end{array}$$

$$\hat{I}_{del}(\Phi) = [1, 3]$$

$$\hat{I}_{del}(\Phi) = [1, 3]$$

$$\hat{I}_{del}(\Phi) = [1, 3]$$

Existence of $\boldsymbol{\Phi}$ with desired property:

Let

$$\begin{aligned} q_0(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_2) \\ q_1(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_1) \end{aligned}$$

Existence of $\boldsymbol{\Phi}$ with desired property:

Let

$$\begin{aligned} q_0(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_2) \\ q_1(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_1) \end{aligned}$$

• Explicitly write down the terms and show $\sum\limits_{\Phi} q_0(\Phi) - q_1(\Phi) = 0.$

Existence of $\boldsymbol{\Phi}$ with desired property:

Let

$$\begin{aligned} q_0(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_2) \\ q_1(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_1) \end{aligned}$$

- Explicitly write down the terms and show $\sum\limits_{\Phi} q_0(\Phi) q_1(\Phi) = 0.$
- \bullet Consider several one-cycle permutations over $\mathfrak X$ to show that

$$q_0(\Phi) - q_1(\Phi) = 0 \ orall \Phi \Leftrightarrow p_{Y|X}(y|x) = p_Y(y) \ orall (x,y) \in \mathfrak{X}^2$$

Existence of $\boldsymbol{\Phi}$ with desired property:

Let

$$\begin{aligned} q_0(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_2) \\ q_1(\Phi) &\triangleq \mathsf{Pr}(\Phi(Y_1) \neq X_1) \end{aligned}$$

- Explicitly write down the terms and show $\sum\limits_{\Phi} q_0(\Phi) q_1(\Phi) = 0.$
- \bullet Consider several one-cycle permutations over $\mathfrak X$ to show that

$$q_0(\Phi) - q_1(\Phi) = 0 \ orall \Phi \Leftrightarrow p_{Y|X}(y|x) = p_Y(y) \ orall (x,y) \in \mathfrak{X}^2$$

• Thus, as long as $p_{Y|X} \neq p_Y$,

 $\exists \Phi \, q_0(\Phi) > q_1(\Phi)$