Database Matching Under Column Deletions

Serhat Bakirtas, Elza Erkip

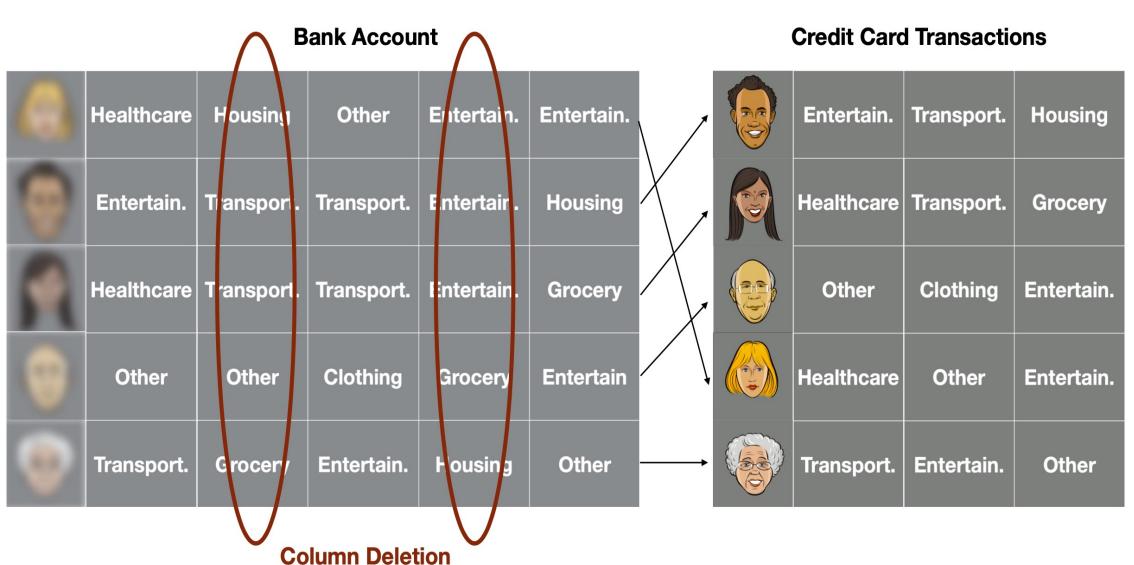
serhat.bakirtas@nyu.edu, elza@nyu.edu

NYU Tandon School of Engineering

III. PROBLEM FORMULATION

 $\mathbf{\Theta}^{-1}(1)$

 $\mathbf{\Theta^{-1}(2)}$


 $\Theta^{-1}(\mathbf{m})$

 $\mathbf{X_{2,n}}$

NYU TANDON SCHOOL OF ENGINEERING

I. MOTIVATION

- Personal data published or sold after anonymization
- Anonymization is not enough!
 - Correlated Data → De-anonymization
- Motivated by time-indexed databases
 - Synchronization errors while sampling
 - Column deletion
 - Deletion locations are unknown!

II. OBJECTIVES

What are the sufficient conditions for successful de-anonymization?

How does side information on the deletion locations help?

Can we extract this side information from an already-matched batch of rows?

How large does this batch have to be?

 $(\mathcal{C}^{(\mathbf{2})},\mathbf{\Theta})$

 $\mathbf{X}_{\mathbf{\Theta}^{-1}(\mathbf{2}),\mathbf{3}}$ lacksquare

$$R = \lim_{n \to \infty} \frac{1}{n} \log_2 m$$

User ID Attribute Vector

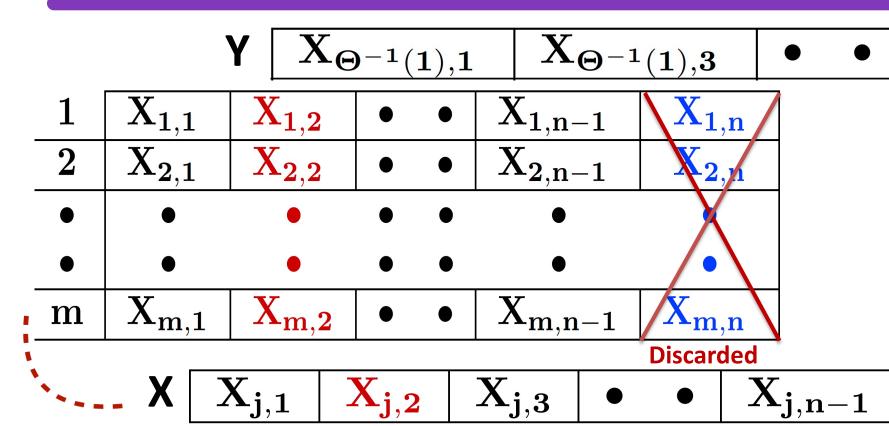
 $\mathbf{X}_{\mathbf{\Theta}^{-1}(\mathbf{2}),\mathbf{1}}$

 $\mathbf{X}_{\mathbf{\Theta}^{-1}(\mathbf{1}),\mathbf{1}}$ $\mathbf{X}_{\mathbf{\Theta}^{-1}(\mathbf{1}),\mathbf{3}}$

n: # of attributes (columns) δ : column deletion probability

 $\mathbf{X_{m,n-1}} \mid \mathbf{X_{m,n}}$

Attribute Vector


 $X_{1,\underline{n-1}}$

 $\mathbf{X_{2,n-1}}$

m: # of users (rows)

 α : deletion detection probability

IV. PROPOSED MATCHING SCHEME

- ightharpoonup Discard the detected deleted columns from $\mathcal{C}^{(1)}$
- > Match Y with X if
 - 1. **X** is ε -typical with respect to p_X
 - 2. Y is a subsequence of X
 - 3. There is no such other row X

V. ACHIEVABLE DATABASE GROWTH RATE

Theorem

Given a column deletion probability $\delta < 1 - \frac{1}{|\mathfrak{X}|}$ and a deletion detection probability α , any database growth rate

$$R < \left[(1 - \alpha \delta) \left(H(X) - H_b \left(\frac{1 - \delta}{1 - \alpha \delta} \right) \right) - (1 - \alpha) \delta \log(|\mathfrak{X}| - 1) \right]^+$$

is achievable, where H,H_b and $[.]^+$ denote the entropy, the binary entropy, and the positive part functions respectively.

VI. DELETION DETECTION

Given a batch of B pairs of correctly—matched rows.

$$\mathcal{D}^{(1)} = \begin{bmatrix} 0 & 1 & \mathbf{0} & 1 & 1 \\ 1 & 0 & \mathbf{0} & 1 & 1 \end{bmatrix} \qquad \mathcal{D}^{(2)} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Detect the j-th column $oldsymbol{\mathcal{D}}_{i}$ of $\mathcal{D}^{\left(\mathbf{1}\right)}$ to be deleted if

- 1. D_j is ε -typical with respect to p_X
- 2. $\mathbf{\mathcal{D}}_{i}$ is a column of $\mathcal{D}^{(2)}$

Theorem

 $\mathbf{X}_{\mathbf{\Theta}^{-1}(1),\mathbf{n}=1}$

 $X_{\Theta^{-1}(\mathbf{2}),\underline{n-1}}$

 $\mathbf{X}_{\mathbf{\Theta^{-1}}(\underline{1}),\mathbf{n-1}}$

Let $\mathcal{D}^{(1)}, \mathcal{D}^{(2)}$ be a batch of correctly-matched B rows of the unlabeled database $\mathcal{C}^{(1)}$, and the corresponding column deleted database $\mathcal{C}^{(2)}$. Then

$$P(g(\mathcal{D}^{(1)},\mathcal{D}^{(2)},j)=1|j\in I_D)\geq 1-\epsilon-n2^{-B(H(X)-\epsilon)}(1-\delta)$$

where I_D is the set of deleted column indices.

VII. OBSERVATIONS

> Achievable Database Growth Rate

- Decreases with δ
- Increases with α and H(X)

Deletion Detection Probability

- Decreases with δ
- Increases with B and H(X)

VIII. CONCLUSION

- Deletion detection helps!
 - No detection → Deletion Channel
 - Full detection → Erasure Channel
- > Deletion detection can be performed given seeds.
- ightharpoonup A seed size $B = \omega(\log n) = \omega(\log\log m)$ is enough for full detection.
- Ongoing work
 - Batchwise Matching
 - Converse Results