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Abstract—Matching entries of correlated shuffled databases
have practical applications ranging from privacy to biology. In
this paper, motivated by synchronization errors in the sampling
of time-indexed databases, matching of random databases under
random column repetitions and deletions is investigated. It is
assumed that for each entry (row) in the database, the attributes
(columns) are correlated, which is modeled as a Markov process.
Column histograms are proposed as a permutation-invariant
feature to detect the repetition pattern, whose asymptotic-
uniqueness is proved using information-theoretic tools. Repetition
detection is then followed by a typicality-based row matching
scheme. Considering this overall scheme, sufficient conditions for
successful matching of databases in terms of the database growth
rate are derived. A modified version of Fano’s inequality leads to
a tight necessary condition for successful matching, establishing
the matching capacity under column repetitions. This capacity
is equal to the erasure bound, which assumes the repetition
locations are known a-priori. Overall, our results provide insights
on privacy-preserving publication of anonymized time-indexed
data.

I. INTRODUCTION

Recently, with the proliferation of smart devices and the
emergence of big data applications, there has been a growing
concern over potential privacy leakage from anonymized data,
approached from legal [1] and corporate [2] points of view.
These concerns are also articulated in the respective literatures
through successful practical de-anonymization attacks on real
data [3]–[16].

In the light of the above practical attacks, several groups ini-
tiated rigorous analyses of the graph matching problem [17]–
[26]. Correlated graph matching has applications beyond
privacy, such as image processing [27] and DNA sequenc-
ing, which is shown to be equivalent to matching bipartite
graphs [28]. Matching of correlated databases, also equivalent
to bipartite graph matching, have been investigated from
information-theoretic [29]–[33] and statistical [34] perspec-
tives. In [30], Cullina et al. introduced cycle mutual informa-
tion as a correlation metric and derived sufficient conditions
for successful matching and a converse result using perfect
recovery as error criterion. In [29], Shirani et al. considered
a pair of databases of the same size, and drawing an analogy
between channel decoding and database matching, derived
necessary and sufficient conditions on the database growth rate
for successful database matching. In [31], Dai et al. considered
the matching of a pair of databases with jointly Gaussian
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Fig. 1. An illustrative example of database matching under column repetitions.
The columns circled in red are deleted whereas the column circled in blue is
repeated twice, i.e., replicated. Our goal is to estimate the row permutation
Θ, which in this example given as; Θ(1) = 4, Θ(2) = 1, Θ(3) = 2, Θ(4) = 3
and Θ(5) = 5, by matching the rows of D(1) and D(2). Here the ith row of
D(1) corresponds to the Θ(i)th row of D(2).

features with perfect recovery constraint. Similarly, in [34],
Kunisky and Niles-Weed considered the same problem from
the statistical perspective in different regimes of database size
and under several recovery criteria.

Motivated by synchronization errors in sampling of time-
series datasets, in our prior work we considered database
matching under random column deletions [32]. Assuming an
i.i.d. underlying distribution for database attributes (columns)
and the same successful matching criterion as [29], we derived
an achievable database growth rate assuming a probabilistic
side information on the deletion locations. We also proposed
an algorithm to extract the side information on the deletion
locations from a batch of already-matched rows, called seeds.

In this paper, we generalize [32], by assuming a more
general model for synchronization errors, namely column
repetitions where in addition to some columns being deleted as
in [32], some columns may be sampled several times consec-
utively, i.e., replicated, as illustrated in Figure 1. Furthermore,
in order to account for the potential correlation among the
attributes (columns), we model the rows using a Markov
process contrary. Under this generalized model, we derive
an improved achievable database growth rate. We propose a
novel histogram-based repetition detection algorithm, where
we compare the column histograms in order to infer the
column repetition pattern with high probability, followed by
a typicality-based matching scheme to match the rows of the
correlated databases. We also derive the necessary conditions
for successful matching. We show that the necessary and
sufficient conditions are tight up to equality, and equal to



the erasure bound, which is obtained when there are no
replications and the deletion locations are perfectly known.
Thus, we completely characterize the capacity of the matching
of column repeated databases.

The organization of this paper is as follows: Section II
introduces the problem formulation. In Section III, our main
result on matching capacity and the proof of the achievability
are presented. In Section IV, the converse is proved. Finally,
in Section V the results and ongoing work are discussed.
Notation: We denote the set of integers {1, ...,n} as [n], and
matrices with uppercase bold letters. For a matrix D, Di, j
denotes the (i, j)th entry. Furthermore, by An, we denote a
row vector consisting of scalars A1, . . . ,An and the indicator
of event ε by 1ε . The logarithms, unless stated explicitly, are
in base 2.

II. PROBLEM FORMULATION

We use the following definitions, some of which are similar
to [29], [32], [33] to formalize our problem.

Definition 1. (Unlabeled Markov Database) An (mn,n,P)
unlabeled Markov database is a randomly generated mn ×n
matrix D = {Di, j ∈ X : i ∈ [mn], j ∈ [n]} whose rows are i.i.d.
and follow a first-order stationary Markov process defined
over the alphabet X= {1, . . . , |X|} with probability transition
matrix P such that

P = γI+(1− γ)U (1)

Ui, j = u j > 0, ∀(i, j) ∈ X2 (2)

and

∑
j∈X

u j = 1 (3)

γ ∈
(
−min

j∈X

u j

1−u j
,1
)

(4)

where I is the identity matrix. It is assumed that
Di,1

i.i.d.∼ π = [u1, . . . ,u|X|], i = 1, . . . ,mn, where π is the sta-
tionary distribution associated with P.

Definition 2. (Column Repetition Pattern) The column repe-
tition pattern Sn is a random vector consisting of i.i.d. elements
S j, j ∈ [n], drawn from a discrete probability distribution pS
with a finite discrete support {0, . . . ,smax}. The parameter
δ ≜ pS(0) is called the deletion probability.

Definition 3. (Labeled Repeated Database) Let D(1) be
an (mn,n,P) unlabeled Markov database, Sn be the column
repetition pattern, and Θn be a uniform permutation of [mn]
with D(1), Sn and Θn independently chosen. Given D(1) and
Sn, the pair (D(2),Θn) is called the labeled repeated database
if the (i, j)th element D(1)

i, j of D(1) and its counterpart D(2)
i, j in

D(2) have the following relation:

D(2)
i, j =

{
E, if S j = 0

D(1)
Θ
−1
n (i), j

⊗1S j if Si ≥ 1
(5)

where 1S j and ⊗ denote the all-ones row vector of length S j

and the Kronecker product, respectively. Furthermore D(2)
i, j = E

corresponds to the empty string and D(2)
i, j = D(1)

Θ
−1
n (i), j

⊗1S j

corresponds to the jth column of D(2) being an mn×S j matrix
consisting of S j copies of the jth column of D(1), concatenated
together after shuffling with Θn. Θn and D(2) are called the
labeling function and correlated column repeated database,
respectively. The respective rows D(1)

i1
and D(2)

i2
of D(1) and

D(2) are said to be matching rows, if Θn(i1) = i2.
If S j = 0, the jth column of D(1) is said to be deleted and

if S j > 1, jth column of D(1) is said to be replicated.

In our model, the correlated column repeated database D(2)

is obtained by permuting the rows of the unlabeled Markov
database D(1) with the uniform permutation Θn followed by
column repetition based on the repetition pattern Sn. We
further assume that there is no noise on the retained entries,
as is often done in the repeat channel literature [35].

Definition 4. (Successful Matching Scheme) A matching
scheme is a sequence of mappings ϕn : (D(1),D(2)) → Θ̂n
where D(1) is the unlabeled database, D(2) is the correlated
column repeated database and Θ̂n is the estimate of the true
labeling function Θn. The scheme ϕn is said to be successful
if

lim
n→∞

Pr
(
Θn(J) ̸= Θ̂n(J)

)
→ 0 (6)

where J ∼ Unif([mn]). Here the event Θn(J) ̸= Θ̂n(J) is called
the matching error.

Similar to [29], [32], [33], our performance metric is the
probability of mismatch of a uniformly chosen row. This
formulation allows us to derive results for a wide set of
database distributions. Note that this performance metric is
different than those of [30], [31], where the probability of
the perfect recovery of the complete labeling function Θn was
considered.

The relationship between the row size mn and the column
size n of the unlabeled database affects the probability of
matching error in the following fashion: For a given n, as mn
increases, so does the probability of matching error due to the
increased number of candidate rows. As stated in [34, Theorem
1.2], for the setting in our paper, the regime of interest is mn
growing exponentially in n.

Definition 5. (Database Growth Rate) The database growth
rate R of an unlabeled Markov database with mn rows and n
columns is defined as

R = lim
n→∞

1
n

logmn (7)

Definition 6. (Achievable Database Growth Rate) Consider
a sequence of (mn,n,P) unlabeled Markov databases, a rep-
etition probability distribution pS and the resulting labeled
repeated databases. A database growth rate R is said to be
achievable if there exists a successful matching scheme when
the unlabeled database has growth rate R.



Definition 7. (Matching Capacity) The matching capacity
C is the supremum of the set of all achievable rates corre-
sponding to a probability transition matrix P and a repetition
probability distribution pS.

Our goal in this paper is to characterize the matching ca-
pacity of the database matching problem under the aforemen-
tioned Markovian row process and random column repetition
models.

III. MATCHING CAPACITY AND ACHIEVABILITY

Theorem 1 below presents our main result on the matching
capacity. We prove the achievability part of Theorem 1 in this
section and the converse in Section IV.

Theorem 1. (Matching Capacity Under Column Repetitions)
Consider a probability transition matrix P and a repetition
probability distribution pS. Then, the matching capacity is

C = (1−δ )2
∞

∑
r=0

δ
rH(X0|X−r−1) (8)

where δ ≜ pS(0) is the deletion probability and H(X0|X−r−1)
is the entropy rate associated with the probability transition
matrix

Pr+1 = γ
r+1I+(1− γ

r+1)U/ (9)

The capacity can further be simplified as

C =
(1−δ )(1− γ)

(1− γδ )
[H(π)+ ∑

i∈X
u2

i logui]

− (1−δ )2
∞

∑
r=0

δ
r
∑
i∈X

ui(γ
r+1 +(1− γ

r+1)ui)

log(γr+1 +(1− γ
r+1)ui) (10)

where H(π) denotes the entropy of the stationary distribution
π .

Observe that the RHS of (8) is the mutual information rate
for an erasure channel with erasure probability δ with first-
order Markov (P) inputs, as given in [36]. Thus, Theorem 1
states that we can achieve the erasure bound which assumes
a-priori knowledge of the column repetition pattern. This is
unlike channel synchronization problems, where the erasure
bound is a loose upper bound on the capacity. As we see below,
the identicality of the repetition pattern across rows allows
us to detect repetitions using a collapsed histogram based
detection applied to columns. Finally, the matching capacity
depends on the repetition distribution only through the deletion
probability δ = pS(0), rendering the replicated columns of the
database irrelevant, as discussed in Section IV.

Note that the special case where γ = 0 results in an i.i.d.
database distribution. Thus we have the following corollary:

Corollary 1. (i.i.d. Database Columns) When the database
entries Di, j are drawn i.i.d. from X according to pX , the
matching capacity becomes

C = (1−δ )H(X) (11)

where δ ≜ pS(0) is the deletion probability.

Note that Corollary 1 improves the achievability result
of [32]. Therefore, in addition to generalizing [32] to Markov
databases and column repetitions, this paper also improves the
achievability result of [32].

To prove the achievability of the matching capacity in
Theorem 1, we consider the following two-phase matching
scheme: Given D(1) and D(2), the unlabeled and the correlated
column repeated databases, we first infer the underlying repe-
tition pattern Sn using the collapsed histogram based detection
algorithm on the column histograms of D(1) and D(2). Then,
we use a joint typicality based sequence matching scheme to
match the rows of D(1) and D(2).

The collapsed histogram based repetition detection algo-
rithm works as follows: First, for tractability, we “collapse”
the Markov chain into a binary-valued one. We pick a symbol
x from the alphabet X, WLOG x = 1, and define the collapsed
databases D̃(1) and D̃(2) as follows:

D̃(r)
i, j =

{
1 if D(r)

i, j = 1

2 if D(r)
i, j ̸= 1

, ∀(i, j), r = 1,2 (12)

From [37, Theorem 3] and (1), the rows of the col-
lapsed database D̃(1) become i.i.d. first-order stationary binary
Markov chains, with the following probability transition matrix
and stationary distribution:

P̃ =

[
γ +(1− γ)u1 (1− γ)(1−u1)
(1− γ)u1 1− (1− γ)u1

]
(13)

π̃ =
[
u1 1−u1

]
(14)

Note that after collapsing the Markov chain, the histogram of
the jth column of D̃(1) can be represented by the scalar H̃(1)

j
which denotes the number of occurrences of state 2 in the jth

column of D̃(1), j ∈ [n]. More formally, we have

H̃(1)
j ≜

mn

∑
i=1

1[
D̃(1)

i, j =2
],∀ j ∈ [n] (15)

Our histogram-based detection algorithm exploits two facts:
First, the histogram (equivalently the type) of each column
of D̃(1) and D̃(2) is invariant to row permutations. Second,
as we prove in Lemma 1, the histogram of each column is
asymptotically-unique due to the row size mn being exponen-
tial in the column size n. Finally, since there is no noise on the
retained entries of D(2), we can match the column histograms,
present in both D̃(1) and D̃(2) and detect the deleted columns,
in an error-free fashion.

The following lemma provides conditions for the
asymptotic-uniqueness of column histograms H̃(1)

j , j ∈ [n].

Lemma 1. (Asymptotic Uniqueness of the Column His-
tograms) Let H̃(1)

j denote the histogram of the jth column of
D̃(1), as in (15). Then,

Pr
(
∃i, j ∈ [n], i ̸= j, H̃(1)

i = H̃(1)
j

)
→ 0 as n → ∞ (16)

if mn = ω(n4).



Proof. See Appendix A.

Note that by Definition 5, mn is exponential in n and the
order relation of Lemma 1 is automatically satisfied.

Next, we present the proof of the achievability part of
Theorem 1.

Proof of Achievability of Theorem 1. Let Sn be the underly-
ing repetition pattern and K ≜ ∑

n
i=1 Si be the number of

columns in D(2). Our matching scheme consists of the fol-
lowing steps:
1) Construct the collapsed histogram vectors H̃(1),n and H̃(2),K

as

H̃(r)
j =

mn

∑
i=1

1[
D̃(r)

i, j =2
],

{
∀ j ∈ [n], if r = 1
∀ j ∈ [K] if r = 2

(17)

2) Check the uniqueness of the entries H̃(1)
j j ∈ [n] of H̃(1),n.

If there are at least two which are identical, declare a detec-
tion error whose probability is denoted by µn. Otherwise,
proceed with Step 3.

3) If H̃(1)
j is absent in H̃(2),K , declare it deleted, assigning

Ŝ j = 0. Note that, conditioned on the uniqueness of the
column histograms H̃(1)

j ∀ j ∈ [n], this step is error free.

4) If H̃(1)
j is present s ≥ 1 times in H̃(2),K , assign Ŝ j = s.

Again, if there is no detection error in Step 2, this step is
error free. Note that at the end of this step, provided there
are no detection errors, we recover Sn, i.e., Ŝn = Sn.

5) Based on Ŝn, D(1) and D(2), construct D̄(2) as the following:
• If Ŝ j = 0, the jth column of D̄(2) is a column consisting

of erasure symbol ∗ /∈ X.
• If Ŝ j ≥ 1, the jth column of D̄(2) is the jth column of

D(1).
Note that after the removal of the additional replicas and the
introduction of the erasure symbols, D̄(2) has n columns.

6) Fix ε > 0. Let pY |X be the probability transition matrix of
an erasure channel with erasure probability δ , that is

pY |X (y|x) =

{
1−δ if y = x
δ if y = ε

, ∀(x,y) ∈ X2 (18)

We consider the input to the memoryless erasure channel
as the ith row Xn

i of D(1). The output Ȳ n is the matching
row of D̄(2). For our row matching algorithm, we match
the lth row Ȳ n

l of D̄(2) with the ith row Xn
i of D(1), if Xn

i is
the only row of D(1) jointly ε-typical [38, Chapter 3] with
Ȳ n

l with respect to pXn,Y n , where

pXn,Y n(xn,yn) = pXn(xn)
n

∏
j=1

pY |X (y j|x j) (19)

where Xn denotes the Markov chain of length n with
probability transition matrix P. This results in Θ̂(1) = l.
Otherwise, declare collision error.

Denote the ε-typical set of sequences (with respect to pXn )
by A(n)

ε (X) and the jointly ε-typical set of sequences (with
respect to pXn,Y n ) by A(n)

ε (X ,Y ). Supposing the true label for

the lth row Ȳ n
l of D̄(2) is 1, i.e., Θn(1) = l, and denoting the

pairwise collision probability between Xn
1 and Xn

i , by Pcol,i,
for any i ̸= 1 we have

Pcol,i = Pr((Xn
i ,Ȳ

n
l ) ∈ A(n)

ε ) (20)

≤ 2−n(I(X ;Y )−3ε) (21)

where

I(X ;Y ) = lim
n→∞

I(Xn;Ȳ n)

n
(22)

is the mutual information rate of the joint probability distri-
bution pXn,Y n . Thus, we can bound the probability of error Pe
as

Pe ≤ µn +Pr(Xn
1 /∈ A(n)

ε (X))+
n

∑
i=2

Pcol,i (23)

≤ µn + ε +
n

∑
i=2

2−n(I(X ;Y )−3ε) (24)

= µn + ε +2n(R−I(X ;Y )+3ε) (25)

Since mn is exponential in n, by Lemma 1, µn → 0 as
n → ∞. Thus

Pe < 3ε as n → ∞ (26)

if R < I(X ;Y )− 3ε . Thus, we can argue that any database
growth rate R satisfying

R < I(X ;Y ) (27)

is achievable, by taking ε small enough. From [36, Corollary
II.2] we have

I(X ;Y ) = (1−δ )2
∞

∑
r=0

δ
rH(X0|X−r−1) (28)

where H(X0|X−r−1) is the entropy rate associated with the
probability transition matrix Pr+1. Finally, we prove (9)
through induction. By Definition 1, (9) is satisfied for r = 0.
Now assume (9) is true for some r ∈ N. In other words,

Pr = γ
rI+(1− γ

r)U (29)

Observing Uk = U, ∀k ∈ N, we obtain

Pr+1 = (γI+(1− γ)U)(γrI+(1− γ
r)U) (30)

= γ
r+1I+(γ(1− γ

r)+(1− γ)γr)U
+(1− γ)(1− γ

r)U2 (31)

= γ
r+1I+(γ(1− γ

r)+(1− γ)γr +(1− γ)(1− γ
r))U (32)

= γ
r+1I+(1− γ

r+1)U (33)

From (28)-(33) and [38, Theorem 4.2.4] we obtain (10),
concluding the achievability part of the proof.



IV. CONVERSE

Theorem 1 states that we can convert repetitions to erasures,
achieving the erasure bound. In this section, we show that the
lower bound on the matching capacity C given in Section III
is in fact tight, by proving it to also be an upper bound on the
matching capacity C.

Proof of Converse of Theorem 1. Here we prove that the era-
sure bound given in (8) is an upper bound on all achievable
database growth rates. We adopt a genie-aided proof where
the repetition pattern Sn is available a-priori. Furthermore, we
use the modified Fano’s inequality presented in [29].

Let R be the database growth rate and Pe be the probability
that the scheme is unsuccessful for a uniformly-selected row
pair. More formally,

Pe ≜ Pr
(
Θn(J) ̸= Θ̂n(J)

)
, J ∼ Unif([mn]) (34)

Furthermore, let Sn be the repetition pattern and K = ∑
n
j=1 S j.

Since Θn is a uniform permutation, from Fano’s inequality,
we have

H(Θn|D(1),D(2))≤ 1+Pe log(mn!) (35)
≤ 1+Pemn logmn (36)

where (36) follows from mn! ≤ mmn
n . Thus, we get

H(Θn) = H(Θn|D(1),D(2))+ I(Θn;D(1),D(2)) (37)

≤ 1+Pemn logmn + I(Θn;D(1),D(2)) (38)

Note that

I(Θn;D(1),D(2)) = I(Θn;D(2))+ I(Θn;D(1)|D(2)) (39)

= I(Θn;D(1)|D(2)) (40)

≤ I(Θn,D(2);D(1)) (41)

where in (40) we have used the independence of Θn and D(2).

I(Θn,D(2);D(1))≤ I(Θn,D(2),Sn;D(1)) (42)

= I(D(1);Θn,D(2)|Sn) (43)

=
mn

∑
i=1

I(D(1),n
i ;D(2),K

Θ
−1
n (i)

|Sn) (44)

= mnI(D(1),n
1 ;D(2),K

Θ
−1
n (1)

|Sn) (45)

= mnI(D(1),n
1 ;D(2),K

Θ
−1
n (1)

,Sn) (46)

where (43)-(46) follow from the fact that D(1) and Sn are
independent and non-matching rows are i.i.d. conditioned on
the repetition pattern Sn.

Now, for brevity let Xn = D(1),n
1 , Y K = D(2),K

Θ
−1
n (1)

and Ỹ n be

obtained from Y K as described in Step 5 of the achievability
proof. Since there is a bijective mapping between (Y K ,Sn) and
(Ȳ n,Sn), we have

I(Xn;Y K ,Sn) = I(Xn;Ȳ n,Sn) (47)
= I(Xn;Ȳ n)+ I(Xn;Sn|Ȳ n) (48)
= I(Xn;Ȳ n) (49)

where (49) follows from the independence of Sn from Xn

conditioned on Ȳ n. This is because since Ȳ n is stripped of
all extra replicas, from (Xn,Ȳ n) we can only infer the zeros
of Sn, which is already known through Ȳ n via erasure symbols.

Finally, from Stirling’s approximation and the uniformity of
Θn, we have

lim
n→∞

1
mnn

H(Θn) = lim
n→∞

[1
n

logmn +
1

mnn
O(n)

]
= R (50)

Therefore, from (38)-(50), we have

lim
n→∞

1
mnn

H(Θn)≤ lim
n→∞

[
1

mnn
+Pe

1
n

logmn + I(Xn;Ȳ n)

]
(51)

R ≤ lim
n→∞

I(Xn;Ȳ n)

n
(52)

= (1−δ )2
∞

∑
r=0

δ
rH(X0|X−r−1) (53)

where (52) follows from the fact that Pe → 0 as n → ∞ and
(53) follows from [36, Corollary II.2]. The rest of the proof
follows from the evaluation of (53) we did in Section III.

Equations (47)-(49) suggest that the additional copies of the
replicated columns do not offer any information. As a result,
discarding the additional replicas in the matching scheme of
Section III does not impact optimality.

V. CONCLUSION

In this paper, we have studied the matching of Markov
databases under random column repetitions. By proving
the asymptotic-uniqueness of the column histograms of the
databases, we have showed that these histograms can be used
for the detection of the deleted and replicated columns. Using
the proposed histogram-based detection and typicality-based
row matching, we have derived an achievability result for
database growth rate, which we have showed is tight, thus
giving us the database matching capacity. Our ongoing work
includes investigating the matching capacity in the presence
of noise as well as synchronization errors [33] and when
different subsets of rows are sampled separately and then
merged together, i.e., different subsets of rows experience
different repetition patterns.
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APPENDIX

A. Proof of Lemma 1

We let µn ≜ Pr(∃i, j ∈ [n], i ̸= j, H̃(1)
i = H̃(1)

j ). From the
union bound we obtain

µn ≤ ∑
(i, j)∈[n]2:i< j

Pr(H̃(1)
i = H̃(1)

j ) (54)

≤ n2 max
(i, j)∈[n]2:i< j

Pr(H̃(1)
i = H̃(1)

j ) (55)

Due to stationarity, the maximum is equal to Pr(H̃(1)
1 = H̃(1)

s+1)

for some s. For brevity, let Q ≜ P̃s and q ≜ Pr(H̃(1)
1 = H̃(1)

s+1).
Observe that H̃(1)

1 and H̃(1)
s+1 are correlated Binom(mn,1−u1)

random variables and for any s, Q has positive values, i.e.,
the collapsed Markov chain is irreducible for any s. Now, we
have

q =
mn

∑
r=0

Pr(H̃(1)
1 = r)Pr(H̃(1)

s+1 = r|H̃(1)
1 = r) (56)

=
mn

∑
r=0

(
m
r

)
(1−u1)

rumn−r
1 Pr(H̃(1)

s+1 = r|H̃(1)
1 = r) (57)

Note that since the rows of D̃(1) are i.i.d., we have

Pr(H̃(1)
s+1 = r|H̃(1)

1 = r) = Pr(A+B = r) (58)

where A ∼ Binom(r,Q1,1) and B ∼ Binom(mn − r,Q2,1) are
independent. Then, from Stirling’s approximation and [38,
Theorem 11.1.2], we get

q =
mn

∑
r=0

(
mn

r

)
(1−u1)

rumn−r
1 Pr(A+B = r) (59)

≤ e√
2π

mn
−1/2

mn

∑
r=0

Π
−1
r 2−mnD( r

mn ∥(1−u1)) Pr(A+B = r) (60)



where Πr =
r

mn
(1− r

mn
). Let

T =
mn

∑
r=0

Π
−1
r 2−mnD( r

mn ∥(1−u1)) Pr(A+B = r) = T1 +T2 (61)

where

T1 = ∑

r:D( r
mn ∥1−u1)>

ε2
n

2loge 2

Π
−1
r 2−mnD( r

mn ∥(1−u1)) Pr(A+B = r) (62)

T2 = ∑

r:D( r
mn ∥1−u1)≤

ε2
n

2loge 2

Π
−1
r 2−mnD( r

mn ∥(1−u1)) Pr(A+B = r), (63)

D( r
mn

∥(1− u1)) denotes the Kullback-Leibler divergence be-
tween Bernoulli( r

mn
) and Bernoulli(1− u1) distributions, and

εn > 0, which is described below in more detail, is such that
εn → 0 as n → ∞.

First, we look at T1. Note that for any r ∈ N, we have
Πr ≤ mn

2, suggesting the multiplicative term in the summation
in (62) is polynomial with mn. Note that we can simply
separate the cases r = 0, r = mn whose probabilities vanish
exponentially in mn. Therefore, as long as mnε2

n → ∞, T1 has
a polynomial number of elements which decay exponentially
with mn. Thus

T1 → 0 as n → ∞ (64)

as long as mnε2
n → ∞.

Now, we focus on T2. From Pinsker’s inequality [38, Lemma
11.6.1], we have

D
(

r
mn

∥∥∥1−u1

)
≤ ε2

n

2loge 2
⇒ TV

(
r

mn
,1−u1

)
≤ εn (65)

where TV denotes the total variation distance between the
Bernoulli distributions with given parameters. Therefore∣∣∣{r : D

( r
mn

∥∥∥1−u1

)
≤ ε2

n

2loge 2
}
∣∣∣ (66)

≤
∣∣∣{r : TV

( r
mn

,1−u1

)
≤ εn}

∣∣∣ (67)

= O(mnεn) (68)

for small εn. Furthermore, when TV
(

r
mn

,1−u1

)
≤ εn, we

have

Π
−1
r ≤ 1

(1−u1)u1
(69)

Now, we investigate Pr(A+B = r) for the values of r in the
interval [mn(1−u1 − εn),mn(1−u1 + εn)].

Pr(A+B = r) =
r

∑
i=1

Pr(A = r− i)Pr(B = i)

+Pr(A = r)Pr(B = 0) (70)

= Qr
1,1Qmn−r

2,2 +
r

∑
i=1

(
r
i

)
Qr−i

1,1 (1−Q1,1)
i

(
mn − r

i

)
Qi

2,1(1−Q2,1)
mn−r−i (71)

Again, from Stirling’s approximation on the binomial coeffi-
cient in (71) and [38, Theorem 11.1.2], we have

Pr(A+B = r)≤ Qr
1,1Qmn−r

2,2 +
e2

2π
r−1/2(mn − r)−1/2U (72)

where

U =
r

∑
i=1

Π
−1
i/r Π

−1
i/mn−r2

−rD(1− i
r ∥Q1,1)−(mn−r)D( i

mn−r ∥Q2,1) (73)

Then, from r ∈ [mn(1−u1 − εn),mn(1−u1 + εn)] we obtain

Pr(A+B = r)≤ Qr
1,1Qmn−r

2,2 +
e2

2π

mn
−1√

(1−u1 − εn)(u1 − εn)
U

(74)

and

U ≤
r

∑
i=1

Π
−1
i/r Π

−1
i/mn−r

2−mn[(1−u1−εn)D(1− i
r ∥Q1,1)+(u1−εn)D( i

mn−r ∥Q2,1)]

(75)

= ∑
i/∈R(εn)

Π
−1
i/r Π

−1
i/mn−r

2−mn[(1−u1−εn)D(1− i
r ∥Q1,1)+(u1−εn)D( i

mn−r ∥Q2,1)]

+ ∑
i∈R(εn)

Π
−1
i/r Π

−1
i/mn−r

2−mn[(1−u1−εn)D(1− i
r ∥Q1,1)+(u1−εn)D( i

mn−r ∥Q2,1)]

(76)

where we define the set R(εn) as

R(εn)≜
{

i ∈ [r] : D
(

1− i
r

∥∥∥Q1,1

)
,D

( i
mn − r

∥∥∥Q2,1

)
≤ ε2

n

2loge 2

}
(77)

Note that similar to T1, the first summation in (76) vanishes
exponentially in mn whenever mnε2

n → ∞, and using Pinsker’s
inequality once more, the second term can be upper bounded
by

O(|R(εn)|) = O(mnεn) (78)

Now, we choose εn = mn
− 1

2 Vn for some Vn satisfying
Vn = ω(1) and Vn = o(m1/2

n ). Thus, T1 vanishes exponentially
fast since mnε2

n =V 2
n → ∞ and

Pr(A+B = r) = O(εn) (79)

T = O(mnε
2
n ) = O(V 2

n ) (80)

µn = O(n2mn
−1/2V 2

n ) (81)

By the assumption mn = ω(n4), we have mn = n4Wn for some
Wn satisfying lim

n→∞
Wn = ∞. Now, taking Vn = o(W 1/4

n ) (e.g.

Vn =W 1/6
n ), we get

µn ≤ O(W−1/2
n V 2

n ) = o(1) (82)

Thus mn = ω(n4) is enough to have µn → 0 as n → ∞.


