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Abstract—The re-identification or de-anonymization of users
from anonymized data through matching with publicly-available
correlated user data has raised privacy concerns, leading to the
complementary measure of obfuscation in addition to anonymiza-
tion. Recent research provides a fundamental understanding
of the conditions under which privacy attacks are successful,
either in the presence of obfuscation or synchronization errors
stemming from the sampling of time-indexed databases. This
paper presents a unified framework considering both obfuscation
and synchronization errors and investigates the matching of
databases under noisy column repetitions. By devising replica
detection and seeded deletion detection algorithms, and using
information-theoretic tools, sufficient conditions for successful
matching are derived. It is shown that a seed size logarithmic
in the row size is enough to guarantee the detection of all
deleted columns. It is also proved that this sufficient condition is
necessary, thus characterizing the database matching capacity of
database matching under noisy column repetitions and providing
insights on privacy-preserving publication of anonymized and
obfuscated time-indexed data.

I. INTRODUCTION

With the exponential boom in smart devices and the growing
popularity of big data, companies and institutions have been
gathering more and more personal data from users which
is then either published or sold for research or commercial
purposes. Although the published data is typically anonymized,
i.e., explicit identifiers of the users, such as names and dates
of birth are removed, researchers [1] and companies [2] have
articulated their concerns over the insufficiency of anonymiza-
tion for privacy as demonstrated by a series of practical attacks
on real data [3]–[7]. Obfuscation, which refers to the deliberate
addition of noise to the database entries, has been suggested as
an additional measure to protect privacy [6]. While extremely
valuable, this line of work does not provide a fundamental
and rigorous understanding of the conditions under which
anonymized and obfuscated databases are prone to privacy
attacks.

Recently, matching correlated pairs of databases have been
investigated from an information-theoretic [8]–[12] and sta-
tistical [13] points of view. In [8], Cullina et al. proposed
cycle mutual information as a metric of correlation and derived
sufficient and necessary conditions for successful matching,
with the performance criterion being the perfect recovery
for all users. In [9], Shirani et al. considered a pair of
anonymized and obfuscated databases and drew analogies
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Fig. 1. An illustrative example of database matching under noisy column
repetitions. The columns circled in red are deleted whereas the fourth column,
which is circled in blue, is repeated twice, i.e., replicated. For each (i, j), Yi, j
is the noisy observation of Xi, j . Furthermore, for each i, Yi,4(1) and Yi,4(2) are
noisy replicas of Xi,4. Our goal is to estimate the row permutation Θn which
is in this example given as; Θn(1) = 5, Θn(2) = 1, Θn(3) = 4, Θn(4) = 3 and
Θn(5) = 2, by matching the rows of D(1) and D(2). Here the ith row of D(1)

corresponds to the Θn(i)th row of D(2).

between database matching and channel decoding. By doing
so, they derived sufficient and necessary conditions on the
database growth rate for reliable matching, in the presence of
noise on the database entries. In [10] Dai et al. investigated
the matching of correlated databases with Gaussian attributes
with the perfect recovery criterion. In [13], Kunisky and Niles-
Weed investigated the same problem as Dai et al., from a
statistical perspective, in different database size regimes for
several performance criteria.

In [11], motivated by the synchronization errors in the
sampling of time-series datasets, we investigated the matching
of two databases of the same number of users (rows), but with
different numbers of attributes (columns). In our model, one
of the databases suffers from random column deletions, where
the deletion indices are only partially and probabilistically
available at the matching side. Under this side information
assumption, we derived an achievable database growth rate.
Demonstrating the impact of this side information on the
achievable rate, we then proposed a deletion detection algo-
rithm given a batch of correctly-matched rows, i.e., seeds and
derived the seed size sufficient to guarantee a non-zero deletion
detection probability.

In [12], we investigated the matching of Markov databases,
thus modeling correlations of the attributes (columns) under
noiseless random column repetitions, a non-trivial extension
of [11], where the attributes were assumed i.i.d.. Under this
generalized model, we devised a column histogram-based rep-
etition detection algorithm and derived an improved achievable



rate, which is equal to the erasure bound [14]. We then
proved a converse showing the tightness of this achievable rate,
thereby characterizing the exact matching capacity of Markov
database matching under noiseless column repetitions.

In this paper, our goal is to investigate the necessary and the
sufficient conditions for the successful matching of database
rows under noisy column repetitions. We assume a generalized
database model where synchronization errors, in the form of
column repetitions, are followed by noise, in the form of
independent noise on the database entries, as illustrated in
Figure 1. The presence of noise prevents us from using the
column histogram-based repetition detection algorithm of [12]
and unlike [12] requires seed users whose identities are known
in both databases [11], [15], [16]. Under these assumptions, we
devise two algorithms: one for deletion detection and the other
for replica detection. We show that if the seed size B grows
linearly with the number of columns n, which is assumed to be
logarithmic in the number of rows mn of the database, deletion
locations can be extracted from the seeds. Then, we propose a
joint typicality-based row matching scheme to derive sufficient
conditions for successful matching. Finally, we prove a tight
converse result, characterizing the matching capacity of the
database matching problem under noisy column repetitions.

The organization of this paper is as follows: Section II
contains the formulation of the problem. In Section III, our
main result on the matching capacity and its proof are pre-
sented. Finally, in Section IV the results and ongoing work
are discussed.
Notation: We denote the set of integers {1, ...,n} as [n], and
matrices with uppercase bold letters. For a matrix D, Di, j
denotes the (i, j)th entry. Furthermore, by An, we denote a
row vector consisting of scalars A1, . . . ,An and the indicator
of event E by 1E . The logarithms, unless stated explicitly, are
in base 2. When the distinction is clear from the context, we
use Θ to denote either the labeling function or the big theta
notation for the asymptotic behavior.

II. PROBLEM FORMULATION

We use the following definitions, some of which are similar
to [9], [11], [12], to formally describe our problem.

Definition 1. (Unlabeled Database) An (mn,n, pX ) un-
labeled database is a randomly generated mn ×n matrix
D = {Di, j ∈ X} with i.i.d. entries drawn according to the
distribution pX with a finite discrete support X= {1, . . . , |X|}.

Definition 2. (Column Repetition Pattern) The column repe-
tition pattern Sn = {S1,S2, ...,Sn} is a random vector consisting
of n i.i.d. entries drawn from a discrete probability distribution
pS with a finite integer support {0, . . . ,smax}.

Definition 3. (Labeled Noisy Repeated Database) Let D(1)

be an (mn,n, pX ) unlabeled database. Let Sn be the independent
repetition pattern, Θn be a uniform permutation of [mn],
independent of (D(1),Sn) and pY |X be a conditional probability
distribution with both X and Y taking values from X. Given
D(1), Sn and pY |X , D(2) is called the labeled noisy repeated

D(1) D(2)Noise
pY |X

Repetition
Sn

Row Shuffling
Θn

Fig. 2. Relation between the unlabeled database D(1) and the labeled noisy
repeated one, D(2).

database if the respective (i, j)th entries D(1)
i, j and D(2)

i, j of D(1)

and D(2) have the following relation:

D(2)
i, j =

{
E, if S j = 0

Y
S j
i if S j ≥ 1

∀i ∈ [mn], ∀ j ∈ [n] (1)

where Y
S j
i is a random row vector of length S j with the

following probability distribution, conditioned on D(1)
Θ
−1
n (i), j

Pr
(

Y
S j
i = yS j

∣∣∣D(1)
Θ
−1
n (i), j

)
=

S j

∏
l=1

pY |X

(
yl

∣∣∣D(1)
Θ
−1
n (i), j

)
(2)

where yS j = y1, . . . ,yS j and D(2)
i, j = E corresponds to D(2)

i, j being
the empty string.

Note that S j indicates the times the jth column of D(1) is
repeated. When S j = 0, the jth column of D(1) is said to be
deleted and when S j > 1, the jth column of D(1) is said to be
replicated.

The ith row of D(2) is said to correspond to the Θ
−1
n (i)th

row of D(1), where Θn is called the labeling function.

The relationship between D(1) and D(2), as described in
Definiton 3, is illustrated in Figure 2.

Note that (2) states that we can treat D(2)
i, j as the output of the

discrete memoryless channel (DMC) pY |X with input sequence
consisting of S j copies of D(1)

Θ
−1
n (i), j

concatenated together. We
stress that pY |X is a general model, capturing any distortion
and noise on the database entries, though we only refer to this
as “noise” in this paper.

As we will discuss in Section III-A, in the noisy setting,
inferring the column repetition pattern, particularly deletions,
is a harder task compared to the noiseless setting investigated
in [12]. Therefore, we assume the availability of seeds, as done
in noiseless database matching [11] and graph matching [15],
[16] literatures.

Definition 4. (Seeds) For the unlabeled and labeled databases
in Definitions 1 and 3, a seed is a pair of correctly-matched
rows. A batch of B seeds (G(1),G(2)) is a pair of databases
(sub-matrices) with respective sizes B×n and B×∑

n
j=1 S j. We

assume a polynomial seed size B = Θ(nd) where d is called
the seed order.

Definition 5. (Successful Matching Scheme)
A matching scheme is a sequence of mappings
φn : (D(1),D(2),G(1),G(2)) 7→ Θ̂n where D(1) is the unlabeled
database, D(2) is the labeled noisy repeated database,
(G(1),G(2)) are seeds and Θ̂n is the estimate of the correct
labeling function Θn. The scheme φn is successful if

Pr
(
Θn(J) ̸= Θ̂n(J)

)
→ 0 as n → ∞ (3)



where the index J is drawn uniformly from [mn].

Note that for a given column size n, as the row size mn
increases, so does the probability of mismatch, as a result
of having a larger number of candidates. Thus, in order to
characterize the relationship between mn and n, we use the
database growth rate introduced in [9]. As stated in [13,
Theorem 1.2], for distributions with parameters constant in
n, the regime of interest is the logarithmic regime where
n ∼ logmn.

Definition 6. (Database Growth Rate) The database growth
rate R of an (mn,n, pX ) unlabeled database is defined as

R = lim
n→∞

1
n

logmn. (4)

Definition 7. (Achievable Database Growth Rate) Consider
a sequence of (mn,n, pX ) unlabeled databases, a repetition
probability distribution pS, a noise distribution pY |X and the
resulting sequence of labeled noisy repeated databases. For
a seed order d, a database growth rate R is said to be
achievable if there exists a successful matching scheme when
the unlabeled database has growth rate R.

Definition 8. (Matching Capacity) The matching capacity
C(d) is the supremum of the set of all achievable rates corre-
sponding to a database distribution pX , a repetition probability
distribution pS, a noise distribution pY |X and a seed order d.

In this paper, our goal is to characterize the matching
capacity C(d), by providing database matching schemes as
well as a tight upper bound on all achievable database growth
rates.

III. MAIN RESULT

In this section, we present our main result on the matching
capacity under noisy column repetitions (Theorem 1) and
prove its achievability by proposing a three-step approach: i)
noisy replica detection and ii) deletion detection using seeds,
followed by iii) a row matching algorithm. Then, we outline
the proof of the converse.

Theorem 1. (Matching Capacity Under Noisy Column
Repetitions) Consider a database distribution pX , a column
repetition distribution pS and a noise distribution pY |X . Then,
for any seed order d ≥ 1, the matching capacity is

C(d) = I(X ;Y S,S) (5)

where S ∼ pS and Y S = Y1, . . . ,YS such that

Pr(Y S = y1, . . . ,yS|X = x) =
S

∏
i=1

pY |X (yi|x) (6)

Theorem 1 states that although the repetition pattern Sn is
not known a-priori, given a seed order d ≥ 1, we can achieve
a database growth rate as if we knew Sn. Since the utility
of seeds increase with the seed order d, we will focus on
d = 1, which we show is sufficient to achieve the matching
capacity. As we discuss in Section III-D, the converse result
holds for any seed size, whereas a general achievability result

for the noisy case with d < 1 requires additional combinatorial
arguments and is omitted due to the space constraints.

Remark 1. (Noiseless Setting) Using [12, Corollary 1], we
can argue that in the noiseless setting, where

pY |X (y|x) = 1[y=x] ∀x ∈ X (7)

we have

C(d) = (1−δ )H(X) (8)

for any seed order d, where δ ≜ pS(0) is the deletion prob-
ability. Furthermore, we show in [12] that in the noiseless
setting Y S = X ⊗1S, the replicas do not offer any additional
information. Thus, for any seed order d ≥ 1, Theorem 1
agrees with [12, Corollary 1] in the noiseless setting with i.i.d.
columns.

Remark 2. (No Synchronization Errors) As discussed in [9,
Corollary 1], when there are no synchronization errors, i.e.,
pS(1) = 1, we have

C(d) = I(X ;Y ) (9)

for any seed order d. Thus, under no synchronization errors,
for any seed order d ≥ 1, Theorem 1 agrees with [9, Corollary
1].

The rest of this section is on the proof of Theorem 1. In
Section III-A, we discuss our noisy replica detection algorithm
and prove its asymptotic performance. In Section III-B, we
introduce a deletion detection algorithm which uses seeds and
derive a seed size sufficient for an asymptotic performance
guarantee. Then, in Section III-C, we combine these two
algorithms and prove the achievability of Theorem 1 by
generalizing the rowwise matching scheme proposed in [12]
to the noisy scenario. Finally, in Section III-D we present the
outline of the proof of the converse of Theorem 1.

Note that when the two databases are independent, Theo-
rem 1 states that the matching capacity becomes zero, hence
our results trivially hold. Hence throughout this section, we
assume that the two databases are not independent.

A. Noisy Replica Detection

We propose to detect the replicas by extracting permutation-
invariant features of the columns of D(2). Our algorithm only
considers the columns of D(2) and as such, can only detect
replications, not deletions. Furthermore, we stress that our
replica detection algorithm does not require any seeds.

In [12], we chose the histogram of each column as
its permutation-invariant feature, proved that the asymptotic
uniqueness of the histograms and matched the column his-
tograms of D(1) and D(2) to infer the repetition pattern. In the
noisy setup, although still asymptotically-unique, the column
histograms of the two databases cannot be matched due to
noise. Joint typicality arguments do not work either, since
arbitrary pairs of column histograms are likely to be jointly
typical, even though the columns are independent. Therefore,
we propose a replica detection algorithm which only considers



D(2) and adopts the Hamming distance between consecutive
columns of D(2) as the permutation-invariant feature.

Let K denote the number of columns of D(2), Cmn
j denote

the jth column of D(2), j = 1, . . . ,K. Our replica detection
algorithm works as follows: We first compute the Hamming
distances dH(C

mn
j ,Cmn

j+1) between Cmn
j and Cmn

j+1, for j ∈ [K−1].
For some average Hamming distance threshold τ chosen based
on pX ,Y , the algorithm decides that Cmn

j and Cmn
j+1 are replicas

only if dH(C
mn
j ,Cmn

j+1) < mnτ , and independent otherwise. In
the following lemma, we show that this algorithm can infer
the replicas with high probability.

Lemma 1. (Noisy Replica Detection) Let E j denote the event
that the Hamming distance based algorithm described above
fails to infer the correct relationship between the columns Cmn

j
and Cmn

j+1 of D(2), j = 1, . . . ,K −1. Then

Pr(
K−1⋃
j=1

E j)→ 0 as n → ∞ (10)

Proof. Let (X1,Y1),(X2,Y2) ∼ pX ,Y be two pairs of random
variables. We define

p0 ≜ Pr(Y1 ̸= Y2|X1 |= X2) (11)

p1 ≜ Pr(Y1 ̸= Y2|X1 = X2) (12)

Observe that Y1 and Y2 are noisy observations of independent
database entries X1, X2 when X1 |= X2 and Y1 and Y2 are noisy
replicas when X1 = X2. We can rewrite p0 and p1 as the
following.

p0 = ∑
x1∈X

∑
x2∈X

∑
y∈X

pX (x1)pX (x2)pY |X (y|x1)
[
1− pY |X (y|x2)

]
(13)

= ∑
x1∈X

∑
y∈X

pX (x1)pY |X (y|x1) ∑
x2∈X

pX (x2)
[
1− pY |X (y|x2)

]
(14)

= ∑
x∈X

∑
y∈X

pX (x)pY |X (y|x) [1− pY (y)] (15)

p1 = ∑
x∈X

∑
y∈X

pX (x)pY |X (y|x)
[
1− pY |X (y|x)

]
(16)

Thus, we have

p0 − p1 = ∑
x∈X

∑
y∈X

pX ,Y (x,y)
[
pY |X (y|x)− pY (y)

]
(17)

For every y ∈ X, let

ψ(y)≜ ∑
x∈X

pX (x)
[
pY |X (y|x)− pY (y)

]2 (18)

= ∑
x∈X

pX (x)

[
pY |X (y|x)− ∑

z∈X
pY |X (y|z)pX (z)

]2

(19)

≥ 0 (20)

where (20) follows from the non-negativity of the square term
in the summation. It must be noted that ψ(y) = 0 only if
pY |X (y|x) = pY (y)∀x ∈ X with pX (x)> 0.

Now, expanding the square term, we obtain

ψ(y) = ∑
x∈X

pX (x)pY |X (y|x)2 −2pY (y) ∑
x∈X

pX (x)pY |X (y|x)

+ ∑
x∈X

pX (x)pY (y)2 (21)

= ∑
x∈X

pX (x)pY |X (y|x)2 −2pY (y)2 + pY (y)2 (22)

= ∑
x∈X

pX (x)pY |X (y|x)2 − pY (y)2 (23)

Now, we rewrite p0 − p1 as

p0 − p1 = ∑
y∈X

∑
x∈X

pX ,Y (x,y)
[
pY |X (y|x)− pY (y)

]
(24)

= ∑
y∈X

[(
∑

x∈X
pX (x)pY |X (y|x)2

)
− pY (y)2

]
(25)

= ∑
y∈X

ψ(y) (26)

≥ 0 (27)

with p0 − p1 = 0 only when pY |X (y|x) = pY (y)∀x,y ∈ X. In
other words, p0 > p1 as long as the two databases are not
independent.

Choose any τ ∈ (p1, p0) bounded away from both p0 and
p1. Let A j denote the event that Cmn

j and Cmn
j+1 are replicas and

B j denote the event that the algorithm detects Cmn
j and Cmn

j+1
as replicas. From the union bound,

Pr(
K−1⋃
j=1

E j)≤
K−1

∑
j=1

Pr(Ac
j)Pr(B j|Ac

j)+Pr(A j)Pr(Bc
j|A j) (28)

Note that conditioned on Ac
j, dH(C

mn
j ,Cmn

j+1)∼ Binom(mn, p0)
and conditioned on A j, dH(C

mn
j ,Cmn

j+1)∼Binom(mn, p1). Then,
from Chernoff bound [17, Theorem 1], we get

Pr(B j|Ac
j)≤ 2−mnD(τ∥p0) (29)

Pr(Bc
j|A j)≤ 2−mnD((1−τ)∥1−p1) (30)

where D(.∥.) denotes the Kullback-Leibler divergence [18,
Chapter 2.3] between two Bernoulli distributions with given
parameters. Thus, we get

Pr(
K−1⋃
j=1

E j)≤ (K −1)
[
2−mnD(τ∥p0)+(2−mnD((1−τ)∥1−p1)

]
(31)

Observing that RHS of (28) has 2K−2=O(n) terms decaying
exponentially in mn and n ∼ logmn concludes the proof.

B. Deletion Detection Using Seeds

e propose to detect deletions using seeds. Let (G(1),G(2)) be
a batch of B = Θ(nd) seeds. Our deletion detection algorithm
works as follows: After finding the replicas as in Section III-A,
we discard all-but-one of the noisy replicas from G(2), to
obtain G̃(2) whose column size is denoted by K̃. At this step,
we only have deletions.

We adopt an exhaustive search over all potential deletion
patterns with n−K̃ deletions on G(1). For each deletion pattern



I, we compute the total Hamming distance dH(G̃(1)(I),G̃(2))
between G̃(1)(I) and G̃(2), where G̃(1)(I) denotes the matrix
obtained by discarding the columns whose indices lie in I from
G(1). More formally, we compute

dH(G̃(1)(I),G̃(2)) = ∑
i∈[mn]

∑
j∈[n−K̃]

1[
G̃(1)(I)i, j ̸=G̃(2)

i, j

] (32)

Then, the algorithm outputs the deletion pattern minimizing
total Hamming distance between G̃(1)(I) and G̃(2), denoted
by Îdel. In other words,

Îdel = argmin
I⊆[n],|I|=n−K̃

dH(G̃(1)(I),G̃(2)) (33)

Note that such a strategy depends on pairs of correlated
entries in G(1) and G̃(2) having a higher probability of
being equal than independent pairs. More formally, given
a correlated pair (X1,Y1) ∼ pX ,Y , and an independent pair
(X2,Y1)∼ pX pY we need

Pr(Y1 = X1)> Pr(Y1 = X2) (34)

which is not true in general.
For example, suppose X= {0,1} with pX (0) = 1/2 and

pY |X follows BSC(q), i.e. pY |X (x|x) = 1−q, x = 0,1. Note that
when q > 1/2 (34) is not satisfied. However, we can flip the
output bits, by applying the bijective remapping σ =

(
1 2
2 1

)
to

Y in order to satisfy (34).
Thus, as long as such a bijective remapping σ : X→ X

satisfying (34) exists, we can use the aforementioned deletion
detection algorithm. Now, suppose that such a mapping σ ex-
ists. We apply σ to the entries of G̃(2) to construct G̃(2)

σ . Then,
our deletion detection algorithm computes dH(G̃(1)(I),G̃(2)

σ )
for each potential deletion pattern I and outputs the pattern
Îdel(σ) minimizing it. In other words,

Îdel(σ) = argmin
I⊆[n],|I|=n−K̃

dH(G̃(1)(I),G̃(2)
σ ) (35)

The following lemma states that such a bijective mapping
σ exists and for a seed order d ≥ 1, this algorithm can infer
the deletion locations with high probability.

Lemma 2. (Seeded Deletion Detection) For a repetition
pattern Sn, let Idel = { j ∈ [n]|S j = 0}. Then there exists a
bijective mapping σ depending on pX ,Y satisfying (34) and
for seed order d = 1,

Pr
(
Îdel(σ) = Idel

)
→ 1 as n → ∞ (36)

Proof. We first prove the existence of such a bijective mapping
σ , satisfying (34). For all σ , let

q0(σ) = Pr(σ(Y1) ̸= X2)

≜ ∑
x1∈X

∑
x2∈X

pX (x1)pX (x2)[1− pY |X (σ
−1(x2)|x1)] (37)

q1(σ)≜ Pr(σ(Y1) ̸= X1)

= ∑
x∈X

pX (x)[1− pY |X (σ
−1(x)|x)] (38)

Here, our goal is to show that there exists at least one σ

satisfying

q0(σ)> q1(σ) (39)

We first prove

∑
σ

q0(σ)−q1(σ) = 0 (40)

where the summation is over all permutations σ . For brevity,
let

Pi, j ≜ pY |X ( j|i) ∀i, j ∈ X (41)

Note that from (41), we have
|X|

∑
j=1

Pi, j = 1 ∀i ∈ X (42)

|X|

∑
i=1

|X|

∑
j=1

Pi, j = |X| (43)

Taking the sum over all σ , we obtain

∑
σ

q0(σ)−q1(σ) = ∑
σ

|X|

∑
i=1

|X|

∑
j=1

pX (i)pX ( j)Pi,σ−1( j)

−∑
σ

|X|

∑
i=1

pX (i)Pi,σ−1(i) (44)

Combining (42)-(44), it can be shown that both terms on the
RHS of (44) are equal to (|X|−1)!. Thus, we have proved (40).

Now, we only need to show that

∃σ q0(σ)−q1(σ) ̸= 0 (45)

Considering several one-cycle permutations over X, one can
show that

q0(σ)−q1(σ) = 0 ∀σ ⇐⇒ pY |X (y|x) = pY (y) ∀(x,y) ∈ X2

(46)

We have assumed the databases are not independent, i.e.,
pX ,Y ̸= pX pY . Thus, there exists a bijective mapping σ sat-
isfying (39).

Now choose such a mapping σ . Let K̂ = ∑
n
j=11[S j ̸=0] and

Λn be the seed size. Let ε > 0 and declare error if K̂ /∈ [(1−δ −
ε)n,(1− δ + ε)n] whose probability is denoted by κn. Then,
we use the union bound to obtain

Pr
(
Îdel(σ) ̸= Idel

)
≤ κn+

∑
I⊆[n],|I|=K̂

Pr(dH(G̃(1)(I),G̃(2)
σ )≤ dH(G̃(1)(Idel),G̃

(2)
σ )) (47)

where the difference of the total Hamming distances in (47)
can be written as the difference of two Binomial random
variables with a common number of trials depending on the
size of the overlap between I and Idel.

Specifically, denote by f (I, Idel) the number of overlapping
elements between [n] \ I and [n] \ Idel. Here we count the
overlaps as follows: We count i1 ∈ ([n] \ I)

⋂
[n] \ Idel as an

overlapping element only if i1 is in the same position in each



one of the ordered sets i1 ∈ ([n]\ I) and [n]\ Idel. For example,
let n = 3, I = {1}, Idel = {3}. Then we have [n] \ I = {2,3}
and [n]\ Idel = {1,2}. Note that even though the element 2 is
present in both sets, it is in different positions when the sets
are ordered. In this case, we have f (I, Idel) = 0.

Now, observe that

dH(G̃(1)(I),G̃(2)
σ )−dH(G̃(1)(Idel),G̃

(2)
σ ) (48)

can be written as the difference between two
Binomial random variables with respective parameters
(Λn(K̂ − f (I, Idel)),q0(σ)) and (Λn(K̂ − f (I, Idel)),q1(σ)).
From Hoeffding’s inequality [17], we obtain

Pr(dH(G̃(1)(I),G̃(2)
σ )≤ dH(G̃(1)(Idel),G̃

(2)
σ ))

= Pr(dH(G̃(1)(I),G̃(2)
σ )−dH(G̃(1)(Idel),G̃

(2)
σ )≤ 0) (49)

≤ exp
(
−1

2
Λn(K̂ − f (I, Idel))(q0(σ)−q1(σ))2

)
(50)

= qΛn(K̂− f (I,Idel)) (51)

where

q ≜ e−
1
2 (q0(σ)−q1(σ))2

< 1 (52)

Furthermore, the number of false deletion index sets I with a
given f (I, Idel) can be wastefully upper bounded by

(n
K̂

)
. Thus,

we can further bound the probability of error as

Pr
(
Îdel(σ) ̸= Idel

)
≤ κn +

K̂−1

∑
i=0

(
n
K̂

)
qΛn(K̂−i) (53)

= κn +

(
n
K̂

) K̂−1

∑
i=0

qΛn(K̂−i) (54)

= κn +

(
n
K̂

) K̂

∑
j=1

qΛn j (55)

= κn +

(
n
K̂

) K̂−1

∑
i=0

qΛn(i+1) (56)

= κn +

(
n
K̂

) K̂−1

∑
i=0

qΛnqΛni (57)

= κn +

(
n
K̂

)
qΛn

K̂−1

∑
i=0

qΛni (58)

≤ κn +2nHb(K̂/n)qΛn
1−qΛnK̂

1−qΛn
(59)

≤ κn +2nHb(K̂/n)qΛn
1

1−q
(60)

= κn +
1

1−q
2nHb(K̂/n)−Λn log 1

q (61)

where Hb denotes the binary entropy function. Observe that
the RHS of (61) vanishes as n → ∞ if

Λn ≥
nHb(K̂/n)

log 1
q

=
2nHb(K̂/n)

(q0(σ)−q1(σ))2 loge
(62)

which can be satisfied with some Λn = Θ(n). Thus a seed
order d = 1 is sufficient for successful deletion detection.

Y K = [Y1, Y2, Y3, Y4, Y5, Y6, . . .]

[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
AdditionỸ = [Y1, Y2| ∗ |Y3, Y4, Y5|Y6| ∗ | . . .]

Fig. 3. An example of the construction of D̃(2), as described in Step 3 of
the proof of Theorem 1, illustrated over a pair of rows Xn of D(1) and Y K

of D(2). After these steps, in Step 4 we check the joint typicality of the rows
Xn of D(1) and Ỹ of D̃(2).

In contrast with the linear seed size of Lemma 2, [11]
requires that the number of seeds is logarithmic in the number
of columns. This is because in [11] the performance criterion
is the successful detection of an arbitrarily-chosen deleted
column, whereas in this work, the criterion is the successful
detection of all deleted columns.

C. Row Matching Scheme and Achievability

We are now ready to outline the proof of achievability of
Theorem 1.
Proof of Achievability of Theorem 1. Let Sn be the underly-
ing repetition pattern and K ≜ ∑

n
i=1 Si be the number of

columns in D(2). The matching scheme we propose follows
these steps:
1) Perform replica detection as in Section III-A. The proba-

bility of error of this step is denoted by ρn.
2) Perform deletion detection using seeds as in Section III-B.

The probability of error is denoted by µn. At this step, we
have an estimate Ŝn of Sn.

3) Using Ŝn, place markers between the noisy replica runs of
different columns to obtain D̃(2). If a run has length 0, i.e.
deleted, introduce a column consisting of erasure symbol
∗ /∈ X. Note that provided that the detection algorithms in
Steps 1 and 2 have performed correctly, there are exactly
n such runs, where the jth run in D̃(2) corresponds to the
noisy copies of the jth column of Θn ◦D(1) if S j ̸= 0, and
an erasure column otherwise.

4) Fix ε > 0. Match the lth row Y K
l of D̃(2) with the ith row

Xn
i of D(1), if Xi is the only row of D(1) jointly ε-typical

with Y K
l according to pX ,Y S,S, assigning Θ̂n(i) = l, where

pX ,Y S|S(x,y
s|s) =

pX (x)1[ys=∗] if s = 0

pX (x)
s

∏
j=1

pY |X (y j|x) if s ≥ 1 (63)

with ys = y1 . . .ys. Otherwise, declare an error.
The column discarding and the marker addition as described

in Steps 3-4, are illustrated in Figure 3.
The total probability of error of this scheme (as in (3)) can

be bounded as follows

Pe ≤ 2nR2−n(I(X ;Y S,S)−3ε)+ ε +ρn +µn (64)



Note that since mn is exponential in n, d ≥ 1, and from WLLN,
using Lemma 1 we have ρn → 0 and using Lemma 2 we have
µn → 0 as n → ∞. Thus Pe ≤ ε as n → ∞ if R < I(X ;Y S,S),
concluding the proof.

The matching scheme proposed above for noisy repeated
database matching is different from the one proposed in [12]
for the noiseless setting in several ways: First, in the noiseless
setting, the seeds are not required and a single detection
algorithm can identify deletions and replicas. Second, in Step 3
of the proof above, unlike [12], the noisy replicas are retained.
This is because under noise, replicas offer additional informa-
tion, similar to a repetition code. This implies an important
distinction between database matching under synchronization
errors and decoding in a repeat channel [19]: In database
matching, the identical repetition pattern over a large number
of rows allows us to detect deletions and replicas, which in turn
improves the achievable database growth rate. On the other
hand, in a repeat channel, detecting the repetition pattern is in
general not possible and the replicas have a negative impact
on the channel capacity.

D. Converse

We argue that the database growth rate achieved in The-
orem 1 is in fact tight using a genie-aided proof through
Fano’s inequality where the repetition pattern Sn is known.
We argue that since the rows are i.i.d. conditioned on the
repetition pattern Sn, the seeds (G(1),G(2)) do not offer
any additional information given Sn. Therefore, as the seeds
become irrelevant in this genie-aided proof, we argue that the
converse result holds for any seed order d.

Proof of Converse of Theorem 1. Let R be the database
growth rate and Pe be the probability that the scheme is
unsuccessful for a uniformly-selected row pair. More formally,

Pe ≜ Pr
(
Θn(J) ̸= Θ̂n(J)

)
, J ∼ Unif([mn]) (65)

Furthermore, let Sn be the repetition pattern and K = ∑
n
j=1 S j.

Since Θn is a uniform permutation, from Fano’s inequality, we
have

H(Θ)≤ 1+mnPe logmn + I(Θn;D(1),D(2),G(1),G(2)) (66)

From the independence of Θn, D(2) and (G(1),G(2)), we get

I(Θn;D(1),D(2),G(1),G(2)) = I(Θn;D(1)|D(2),G(1),G(2)) (67)

≤ I(Θn,D(2),G(1),G(2);D(1)) (68)

≤ I(Θn,D(2),Sn;D(1)) (69)

= mnI(Y K ,Sn;Xn) (70)

= mnnI(X ;Y S,S) (71)

where (69) follows from the fact that given Sn, G(1),G(2) do
not offer any additional information. Equation (70) follows
from the fact that non-matching rows are i.i.d. conditioned on
the repetition pattern Sn. Furthermore, (71) follows from the
fact that the entries of D(1) i.i.d., and the noise on the entries
are also i.i.d.

Finally, from Stirling’s approximation and (71), we obtain

R = lim
n→∞

1
mnn

H(Θn) (72)

≤ lim
n→∞

[
1

mnn
+PeR+ I(X ;Y S,S)

]
(73)

≤ I(X ;Y S,S) (74)

where (74) follows from the fact that Pe → 0 as n → ∞.

IV. CONCLUSION

In this work, we have studied the database matching prob-
lem under random noisy column repetitions. We have showed
that the running Hamming distances between the consecutive
columns of the labeled noisy repeated database can be used
to detect replicas. In addition, given seeds whose size grows
logarithmic with the number of rows, an exhaustive search
over the deletion patterns can be used to infer the locations
of the deletions. Using the proposed detection algorithms,
and a joint typicality based rowwise matching scheme, we
have derived an achievable database growth rate, which we
prove is tight. Therefore, we have completely characterized the
database matching capacity under noisy column repetitions.
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